Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Jadhav V, Deshpande S, Radke U, Mahale H, Patil PG
    J Prosthet Dent, 2021 Oct;126(4):590-594.
    PMID: 33012529 DOI: 10.1016/j.prosdent.2020.07.014
    STATEMENT OF PROBLEM: Xerostomia refers to the decrease in the quality and quantity of saliva. In denture wearers, xerostomia affects the retention of the denture because of lack of wettability of the denture base. However, which denture base resin materials are best wetted by artificial salivary substitutes is unclear.

    PURPOSE: The purpose of this in vitro study was to determine the wetting properties of 3 different commercially available denture base resin materials with artificial salivary substitute by using contact angle measurements and to compare these properties before and after thermocycling.

    MATERIAL AND METHODS: A total 120 specimens were fabricated with 3 different denture base materials (n=40): heat-polymerized polymethylmethacrylate (DenTek), injection-molded nylon polyamide (Valplast), and microwave polymerized (VIPI WAVE). The advancing and receding contact angles were measured with a goniometer by using the WinDrop++ software program. The contact angle hysteresis was calculated from the advancing and receding contact angles values. The same specimens were subjected to thermocycling to measure the advancing and receding contact angles values. The comparative evaluation was carried out before and after thermocycling.

    RESULTS: The mean ±standard deviation contact angles of the microwave-polymerized material were (62.40 ±1.21 degrees) advancing contact angle, (32.12 ±0.66 degrees) receding contact angle, and (30.28 ±1.40 degrees) contact angle of hysteresis. It was followed by the injection-molded nylon polyamide material, whose mean ±standard deviation contact angle values were (68.57 ±1.72 degrees) advancing contact angle, (43.02 ±1.39 degrees) receding contact angle, (26.27 ±2.05 degrees) contact angle hysteresis and high impact strength heat-polymerized polymethylmethacrylate material, whose mean ±standard deviation contact angle values were (69.81 ±0.16 degrees) advancing contact angle, (41.90 ±1.02 degrees) receding contact angle, and (27.91 ±0.97 degrees) contact angle hysteresis. The statistical analysis showed significant differences among contact angle values of the microwave-polymerized material as compared with the heat-polymerized polymethylmethacrylate and injection-molded nylon polyamide materials (P

    Matched MeSH terms: Denture Bases*
  2. Yacob N, Ahmad NA, Safii SH, Yunus N, Abdul Razak F
    J Prosthet Dent, 2023 Jul;130(1):131.e1-131.e7.
    PMID: 37210224 DOI: 10.1016/j.prosdent.2023.04.017
    STATEMENT OF PROBLEM: How the build orientation of a 3-dimensionally (3D) printed denture affects microbial adhesion is unclear.

    PURPOSE: The purpose of this in vitro study was to compare the adherence of Streptococcus spp. and Candida spp. on 3D-printed denture bases prepared at different build orientations with conventional heat-polymerized resin.

    MATERIAL AND METHODS: Resin specimens (n=5) with standardized 28.3 mm2 surface area were 3D printed at 0 and 60 degrees, and heat-polymerized (3DP-0, 3DP-60, and HP, respectively). The specimens were placed in a Nordini artificial mouth (NAM) model and exposed to 2 mL of clarified whole saliva to create a pellicle-coated substratum. Suspensions of Streptococcus mitis and Streptococcus sanguinis, Candida albicans and Candida glabrata, and a mixed species, each at 108 cfu/mL were pumped separately into the model for 24 hours to promote microbial adhesion. The resin specimens were then removed, placed in fresh media, and sonicated to dislodge attached microbes. Each suspension (100 μL) was aliquoted and spread on agar plates for colony counting. The resin specimens were also examined under a scanning electron microscope. The interaction between types of specimen and groups of microbes was examined with 2-way ANOVA and then further analysis with Tukey honest significant test and Kruskal-Wallis post hoc tests (α=.05).

    RESULTS: A significant interaction was observed between the 3DP-0, 3DP-60, and HP specimen types and the groups of microbes adhering to the corresponding denture resin specimens (P

    Matched MeSH terms: Denture Bases*
  3. Jaiswal N, Patil PG, Gangurde A, Parkhedkar RD
    J Prosthet Dent, 2019 Mar;121(3):517-522.
    PMID: 30391058 DOI: 10.1016/j.prosdent.2018.03.037
    STATEMENT OF PROBLEM: The prosthodontic problems faced by a patient with xerostomia are of great concern. To aid in retention, artificial saliva substitutes should exhibit good wettability on the denture base.

    PURPOSE: The purpose of this in vitro study was to evaluate the wettability of 3 different artificial saliva substitutes on heat-polymerized acrylic resin and to compare these properties with natural saliva and distilled water.

    MATERIAL AND METHODS: A total of 150 heat-polymerized acrylic resin specimens were prepared with 25×15×2 mm dimensions. The specimens were divided into 5 groups (n=30): human saliva, distilled water, Aqwet, Mouth Kote, and Stoppers 4. The advancing and receding contact angle values were measured by using a goniometer, and the contact angle hysteresis and equilibrium angle were calculated. One-way ANOVA and the Bonferroni multiple comparisons test were performed to determine the difference between contact angle values among the groups (α=.05).

    RESULTS: The means of the 5 groups differed significantly (P

    Matched MeSH terms: Denture Bases*
  4. May LW, John J, Seong LG, Abidin ZZ, Ibrahim N, Danaee M, et al.
    J Indian Prosthodont Soc, 2021 5 4;21(2):198-203.
    PMID: 33938871 DOI: 10.4103/jips.jips_41_21
    Aim: To investigate the effect of different cooling methods on denture base adaptation of rapid heat-cured acrylic resin using 3D superimposition technique.

    Setting and Design: In vitro - Comparative study.

    Materials and Methods: Denture base adaptation of two different rapid heat-cured polymethyl methacrylate acrylic resins using five different cooling methods were compared. Forty maxillary edentulous stone cast were prepared to produce the denture bases with standardized thickness. The specimens were divided into five groups (n = 8) according to type of materials and cooling methods. The master stone cast and all forty denture bases were scanned with 3Shape E1 laboratory scanner. The scanned images of each of the denture bases were superimposed over the scanned image of the master cast using Materialize 3-matic software. Three dimensional differences between the two surfaces were calculated and color surface maps were generated for visual qualitative assessment.

    Statistical Analysis Used: Generalized Linear Model Test, Bonferroni Post Hoc Analysis.

    Results: All bench-cooled specimens showed wide green-colored area in the overall palatal surface, while the rapid cooled specimens presented with increased red color areas especially at the palate and post dam area. Generalized Linear Model test followed by Bonferroni post hoc analysis showed significant difference in the root mean square values among the specimen groups.

    Conclusion: Samples that were bench cooled, demonstrated better overall accuracy compared to the rapid cooling groups. Regardless of need for shorter denture processing time, bench cooling of rapid heat-cured PMMA is essential for acceptable denture base adaptation.

    Matched MeSH terms: Denture Bases*
  5. Nizam A, Mohamed SH, Arifin A, Mohd Ishak ZA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:145-6.
    PMID: 15468860
    The aim of this study was to evaluate the tensile properties and water absorption of denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3) as particulate filler. Specimens for mechanical testing were prepared by adding composite powder to the monomer followed by hand mixing as in dental laboratory procedure. The tensile strength of the prepared denture base material was slightly higher than commercial denture base material, while the water absorption was almost the same for all formulation of denture base materials.
    Matched MeSH terms: Denture Bases*
  6. Kannaiyan K, Rathod A, Bhushan P, Mailankote S, Almuraikhi T, Daghriri A
    J Contemp Dent Pract, 2024 Mar 19;25(3):241-244.
    PMID: 38690697 DOI: 10.5005/jp-journals-10024-3612
    AIM: The current study was designed to assess the linear dimensional changes and adaptability of two heat-cured denture base resins using various cooling methods.

    MATERIALS AND METHODS: To prepare a total of 90 acrylic resin samples (45 acrylic resin samples for each material), four rectangular stainless-steel plates measuring 25 × 25 × 10 mm were fabricated. For both groups, the material was put into the mold at the dough stage. Group I - SR Triplex Hot Heat Cure acrylic; group II - DPI Heat Cure acrylic. Both groups used the same curing procedure. One of the following three techniques was used to cool the material (15 samples from each material) once the curing cycle was finished: (A) water bath, (b) quenching, and (C) air. A traveling microscope was used to measure the distance between the markings on the acrylic samples. The data was recorded and statistically analyzed.

    RESULTS: In SR Triplex Hot heat cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.242 ± 0.05), followed by the air technique (0.168 ± 0.11) and the least was found in the water bath technique (0.146 ± 0.01). In DPI Heat Cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.284 ± 0.09), followed by the air technique (0.172 ± 0.18) and the least was found in the water bath technique (0.158 ± 0.10). There was a statistically significant difference found between these three cooling techniques. On comparison of adaptability, the water bath technique, the marginal gap SR Triplex Hot was 0.012 ± 0.02 and DPI Heat Cure was 0.013 ± 0.02. In the quenching technique, the marginal gap SR Triplex Hot was 0.019 ± 0.04 and DPI Heat Cure was 0.016 ± 0.04. In the air technique, the marginal gap SR Triplex Hot was 0.017 ± 0.01 and DPI Heat Cure was 0.019 ± 0.01.

    CONCLUSION: The present study concluded that among the different cooling methods, the water bath technique had the least linear dimensional change, followed by the air and quenching techniques. When comparing the materials, DPI Heat Cure acrylic resin showed a greater linear dimensional change than SR Triplex Hot heat cure acrylic resin.

    CLINICAL SIGNIFICANCE: During polymerization, heat-cured acrylic resins experience dimensional changes. Shrinkage and expansion are dimensional changes that occur in heat-cured acrylic resins and have an impact on the occlusal relationship and denture fit. However, the denture base's material qualities and the different temperature variations it experiences during production may have an impact on this. How to cite this article: Kannaiyan K, Rathod A, Bhushan P, et al. Assessment of Adaptability and Linear Dimensional Changes of Two Heat Cure Denture Base Resin with Different Cooling Techniques: An In Vitro Study. J Contemp Dent Pract 2024;25(3):241-244.

    Matched MeSH terms: Denture Bases*
  7. Kannaiyan K, Biradar Sharashchandra M, Kattimani S, Devi M, Vengal Rao B, Kumar Chinna S
    J Pharm Bioallied Sci, 2020 Aug;12(Suppl 1):S399-S403.
    PMID: 33149494 DOI: 10.4103/jpbs.JPBS_117_20
    Introduction: Polymethyl methacrylate (PMMA) has been widely accepted and used in dentistry owing to its working characteristics, aesthetics and stability in the oral environment, ease in manipulation, and inexpensive processing methods and equipment.

    Aim and Objectives: The aim of this study was to evaluate the flexural strength of a high-impact PMMA denture base resin material and flexural strength of a commonly available heat cure PMMA denture base material with Kevlar, glass, and nylon fibers.

    Materials and Methods: The test samples were studied under two groups. The Group I (control group) comprised pre-reinforced PMMA (Lucitone 199; Dentsply Sirona Prosthetics, York, Pennsylvania, USA) consisting of 12 samples and second group comprised regular PMMA (DPI, Mumbai, India) reinforced with different fibers. The second test group was further divided into three subgroups as Group 2, Group 3, and Group 4 comprising 12 samples each designated by the letters a-l. All the samples were marked on both ends. A total of 48 samples were tested. Results were analyzed and any P value ≤0.05 was considered as statistically significant (t test).

    Results: All the 48 specimens were subjected to a 3-point bending test on a universal testing machine (MultiTest 10-i, Sterling, VA, USA) at a cross-head rate of 2 mm/min. A load was applied on each specimen by a centrally located rod until fracture occurred; span length taken was 50 mm. Flexural strength was then calculated.

    Conclusion: Reinforcement of conventional denture base resin with nylon and glass fibers showed statistical significance in the flexural strength values when compared to unreinforced high impact of denture base resin.

    Matched MeSH terms: Denture Bases
  8. Rahaman Ali AAA, John J, Mani SA, El-Seedi HR
    J Prosthodont, 2020 Aug;29(7):611-616.
    PMID: 30637856 DOI: 10.1111/jopr.13018
    PURPOSE: To assess the impact of thermal cycling on flexural properties of denture base acrylic resin reinforced with microcrystalline cellulose (MCC) derived from oil palm empty fruit bunch (OPEFB).

    MATERIALS AND METHODS: The flexural strength and flexural modulus, following thermal cycling (5000 cycles of 5-55°C) of 3 MCC-reinforced poly methyl methacrylate (PMMA) specimens were compared with the conventional and commercially available high-impact PMMA. The 3 test groups were represented by addition of various weight combinations of MCC and acrylic powders.

    RESULTS: All 3 test groups with the addition of MCC demonstrated improved flexural strength and flexural modulus compared to the conventional resin, without and after thermal cycling. The highest mean flexural strength corresponded to the specimens reinforced with 5% MCC followed by 2% MCC.

    CONCLUSION: Addition of MCC derived from OPEFB to PMMA may be a viable alternative to the existing, commercially available synthetic reinforced PMMA resins. The potential application of natural fillers in the fabrication of a reinforced denture base resin needs further study.

    Matched MeSH terms: Denture Bases
  9. Marlynda Ahmad, Dayang Fadzlina Abang Ibrahim, Nur Hafizah Hazmi, Natasya Ahmad Tarib, Kamarul Hisham Kamarudin
    Malaysian Dental Journal, 2010;31(2):65-70.
    MyJurnal
    Aim of the study: To compare the weight of retrieved food accumulated under the dentures base with and without adhesive treatment.

    Materials and Method: Each subject was given 32 g of non-salted dry roasted peanuts to chew and swallow. After finishing all the peanuts, the subject was asked to brush their denture using toothbrush and toothpaste without removing the denture from the mouth and rinsed their mouth vigorously with water. The weight of the retrieved peanuts accumulated under the denture base collected, dried, and weighted. All procedures were repeated with denture adhesive.

    Results: On average, the mean weight of peanuts particles recovered beneath upper dentures without application of denture adhesive was 51.21 mg which is higher than the mean weight of upper denture with adhesive treatment (35.36 mg). The similar pattern was detected for the lower dentures but at higher mean weight.

    Conclusion: Application of denture adhesive significantly reduced the amount of retrieved peanut particles collected under the denture base compared to no-adhesive treatment (p< 0.005).
    Matched MeSH terms: Denture Bases
  10. Hiremath S, Jairaj A
    J Clin Diagn Res, 2017 Mar;11(3):ZD09-ZD11.
    PMID: 28511521 DOI: 10.7860/JCDR/2017/22240.9385
    The purpose of this report is to introduce Cu-sil like denture as a functional space maintainer. Here, we report two paediatric cases treated with Cu-sil like denture with multiple edentulous spaces and partially erupted/compromised permanent teeth. Cu-sil like denture not only serves as removable partial functional space maintainer, but also restores the vertical dimension of occlusion, mastication and aesthetics in children. Cu-sil like denture is used in elderly patients who are not willing for extraction of remaining few healthy teeth in the oral cavity. This concept utilizes the remaining natural teeth in the arch, accommodates them within the denture through perforations made in the denture base. The gap between the denture base and the tooth is sealed using a resilient liner. Such denture is used for the paediatric age group in this report for functional rehabilitation temporarily. The report describes the pros and cons of the Cu-sil like denture use in children with technique of preparation along with review of literature.
    Matched MeSH terms: Denture Bases
  11. Ahmad F, Dent M, Yunus N
    J Prosthodont, 2009 Oct;18(7):596-602.
    PMID: 19515166 DOI: 10.1111/j.1532-849X.2009.00481.x
    This study evaluated the shear bond strengths of light-polymerized urethane dimethacrylate (Eclipse) and heat-polymerized polymethylmethacrylate (Meliodent) denture base polymers to intraoral and laboratory-processed reline materials.
    Matched MeSH terms: Denture Bases*
  12. Ali IL, Yunus N, Abu-Hassan MI
    J Prosthodont, 2008 Oct;17(7):545-9.
    PMID: 18761582 DOI: 10.1111/j.1532-849X.2008.00357.x
    This study compared the surface hardness, flexural strength, and flexural modulus of a light- and heat-cured urethane dimethacrylate (UDMA) to two conventional polymethyl methacrylate (PMMA) denture base resins. The effect of less-than-optimal processing condition on the hardness of internal and external surfaces of UDMA specimens was also investigated.
    Matched MeSH terms: Denture Bases*
  13. Yunus N, Rashid AA, Azmi LL, Abu-Hassan MI
    J Oral Rehabil, 2005 Jan;32(1):65-71.
    PMID: 15634304
    Nylon denture base material could be a useful alternative to poly (methyl methacrylate) (PMMA) in special circumstances such as patient allergy to the monomer. The aim of this study was to evaluate the flexural properties of a nylon denture base material (Lucitone FRS), a conventional compression-moulded heat-polymerized (Meliodent), a compression-moulded microwave-polymerized (Acron MC) and an injection-moulded microwave-polymerized (Lucitone 199) PMMA polymers. The effect of aldehyde-free, oxygen releasing disinfectant solution (Perform) on these properties was also investigated. The flexural modulus and the flexural strength were assessed with a three-point bending test. Specimens were stored in water at a temperature of 37 degrees C for 30 days. For each material, half of the prepared specimens were randomly selected and immersed in the disinfectant 24 h prior to testing. Results were compared statistically at a confidence level of 95%. The result showed that in both the control and disinfected groups, the flexural modulus of nylon was significantly lower than the three PMMA polymers. The flexural strength of nylon was significantly lower than those of Meliodent and Acron MC but was comparable with Lucitone 199. A 24-h immersion in the disinfecting solution increased the rigidity of nylon denture base material.
    Matched MeSH terms: Denture Bases*
  14. Mohamed SH, Arifin A, Mohd Ishak ZA, Nizam A, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:147-8.
    PMID: 15468861
    The aim of this study was to evaluate the mechanical properties and glass transition temperature (Tg) of a denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3). The glass transition temperature was studied by using differential scanning calorimetry (DSC). The effect of powder-to-liquid ratio was investigated. The result showed that the tensile properties and the Tg were slightly effected by the powder-to-liquid ratio. The ratio of 2.2:1 by weight of powder to liquid was found to be the best ratio for mixing the material to give the best result in this formulation.
    Matched MeSH terms: Denture Bases*
  15. Aiemeeza Rajali, Siti Fauzza Ahmad
    MyJurnal
    Introduction: The compatibility of denture cleanser is crucial in the prevention of failure of adhesion between silicone soft liner and acrylic denture base, thus ensuring the durability of the prosthesis. This scanning electron microscope (SEM) study was to determine the mode of failure and measured the gap formation between silicone soft liners and Polymethylmethacrylate (PMMA) denture base after immersion in denture cleansers. Methods: A total of 135 specimens of PMMA denture base lined with three different silicone soft liners (GC Reline Soft, Mollosil and Tokuyama Sofreliner Tough) were immersed into denture cleansers (Polident® and Stearadent) daily and stored in distilled water at 37±1°C. Specimens were examined and sectioned at 2.5mm and 5.0mm from the margin after 1 day, 30 days and 90 days before analyzed. Results: No significant difference detected in the mode of failure and gap formation after one-day immersion. Adhesive failure was the commonest failure at the margin after 30 days (71.11%) and after 90 days (95.56%). However, 33.33% of specimens showed mixed failure at 5.0mm sectioned after 90 days. A significant difference of gap formation was demonstrated from Mollosil in Steradent at the margin and at 2.5 mm sectioned after 30 days and after 90 days (p
    Matched MeSH terms: Denture Bases
  16. Kannaiyan K, Rakshit P, Bhat MPS, Sadasiva SKK, Babu SC, Ummer H
    J Contemp Dent Pract, 2023 Nov 01;24(11):891-894.
    PMID: 38238278 DOI: 10.5005/jp-journals-10024-3563
    AIM: The current study aimed to determine the impact of three different disinfectants on the surface roughness and color stability of heat-cure acrylic denture material.

    MATERIALS AND METHODS: Using a stainless-steel mold, disc-shaped wax patterns with dimensions of 10 mm in diameter and 2 mm thick (in accordance with ADA Specification No. 12) were created and prepared for a total of 75 acrylic samples. Dimensions of all 75 acrylic samples were checked with a digital Vernier caliper. About 25 samples of denture base material were immersed in three different chemical disinfectants: Group I: immersed in chlorhexidine gluconate solution, group II: immersed in sodium hypochlorite solution, and group III: immersed in glutaraldehyde solution. All samples were scrubbed daily for 1 minute with the appropriate disinfectant and submerged for 10 minutes in the same disinfectant. Between disinfection cycles, samples were kept in distilled water at 37°C. Color stability was measured using a reflection spectrophotometer. Surface roughness values were measured by a profilometer at baseline following 15 days and 30 days.

    RESULTS: After 15 days, the color stability was better in chlorhexidine gluconate solution group (4.88 ± 0.24) than sodium hypochlorite solution (4.74 ± 0.18) and glutaraldehyde solution group (4.46 ± 0.16). The mean surface roughness was less in glutaraldehyde solution group (2.10 ± 0.19), followed by chlorhexidine gluconate solution group (2.48 ± 0.09) and sodium hypochlorite solution group (2.64 ± 0.03). After 30 days, the color stability was significantly better in chlorhexidine gluconate solution group (4.40 ± 0.02), followed by sodium hypochlorite solution (4.06 ± 0.16) and glutaraldehyde solution group (3.87 ± 0.17). The mean surface roughness was significantly lesser in glutaraldehyde solution group (2.41 ± 0.14), followed by chlorhexidine gluconate solution group (2.94 ± 0.08) and sodium hypochlorite solution group (3.02 ± 0.13).

    CONCLUSION: In conclusion, the color stability was significantly better in chlorhexidine gluconate solution group than sodium hypochlorite solution and glutaraldehyde solution group. But the surface roughness was significantly lesser in the glutaraldehyde solution group, followed by the chlorhexidine gluconate and sodium hypochlorite solution group.

    CLINICAL SIGNIFICANCE: The maintenance of the prosthesis requires the use of a denture disinfectant; therefore, it is crucial to select one that is effective but would not have a negative impact on the denture base resin's inherent characteristics over time. How to cite this article: Kannaiyan K, Rakshit P, Bhat MPS, et al. Effect of Different Disinfecting Agents on Surface Roughness and Color Stability of Heat-cure Acrylic Denture Material: An In Vitro Study. J Contemp Dent Pract 2023;24(11):891-894.

    Matched MeSH terms: Denture Bases
  17. Baig MR, Ariff FT, Yunus N
    Indian J Dent Res, 2011 Mar-Apr;22(2):210-2.
    PMID: 21891887 DOI: 10.4103/0970-9290.84288
    BACKGROUND: The clinical success of relining depends on the ability of reline resin to bond to denture base. Surface preparations may influence reline bond strength of urethane-based dimethacrylate denture base resin.
    AIM: To investigate the effect of bur preparation on the surface roughness (R a ) of eclipse denture base resin and its shear bond strength (SBS) to an intra-oral self-curing reline material. The mode of reline bonding failure was also examined.
    MATERIALS AND METHODS: Twenty-four cylindrical Eclipse™ specimens were prepared and separated into three groups of eight specimens each. Two groups were subjected to mechanical preparation using standard and fine tungsten carbide (TC) burs and the third group (control) was left unprepared. The R a of all specimens was measured using a contact stylus profilometer. Subsequently, relining was done on the prepared surface and SBS testing was carried out a day later using a universal testing machine.
    RESULTS: One-way ANOVA revealed significant differences (P<0.05) in R a and SBS values for all the groups. Post-hoc Tukey's HSD test showed significant differences (P<0.05) between all the groups in the R a values. For SBS also there were significant differences (P<0.05), except between standard bur and control.
    CONCLUSIONS: 1) There was a statistically significant difference in the R a of Eclipse™ specimens prepared using different carbide burs (P<0.05). 2) There was a statistically significant difference in the relined SBS (P<0.05) when prepared using different burs, but the difference between the standard bur and the control group was not statistically significant.
    Matched MeSH terms: Denture Bases*
  18. Ling BC
    Quintessence Int, 2004 Apr;35(4):294-8.
    PMID: 15119715
    This article describes a technique of constructing a set of maxillary and mandibular complete dentures in three visits instead of the usual five clinical appointments. This system of complete-denture construction is made possible because of the combined use of visible light-cured material as an impression tray and record base material, as well as the use of new biometric wax occlusion rims. Unlike some earlier techniques that use light-cured resin composites as the denture base materials, this method retains the use of heat-cured polymethylmethacrylate as the denture base material.
    Matched MeSH terms: Denture Bases*
  19. Elshereksi NW, Ghazali MJ, Muchtar A, Azhari CH
    J Dent, 2017 Jan;56:121-132.
    PMID: 27916635 DOI: 10.1016/j.jdent.2016.11.012
    OBJECTIVES: This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied.

    METHODS: Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated.

    RESULTS: NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (p<0.05). While the fracture toughness of untreated samples was reduced by 8%, an enhancement of 25% was achieved after titanation. In addition, the fracture toughness of the titanated samples was higher than the silanated ones by 10%.

    CONCLUSION: Formation of a monolayer on the surface of TCA enhanced the NBT dispersion, however agglomeration of silanated NBT was observed due to insufficient coverage of NBT surface. Such behaviour led to reducing the porosity level and improving fracture toughness of titanated NBT/PMMA composites. Thus, TCA seemed to be more effective than silane.

    CLINICAL SIGNIFICANCE: Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity.

    Matched MeSH terms: Denture Bases*
  20. Memon MS, Yunus N, Razak AA
    Int J Prosthodont, 2001 May-Jun;14(3):214-8.
    PMID: 11484567
    PURPOSE: The impact strength and the flexural properties of denture base materials are of importance in predicting their clinical performance upon sudden loading. This study compares the impact and transverse strengths and the flexural modulus of three denture base polymers.
    MATERIALS AND METHODS: The investigation included a relatively new microwave-polymerized polyurethane-based denture material processed by an injection-molding technique, a conventional microwave-polymerized denture material, and a heat-polymerized compression-molded poly(methyl methacrylate) (PMMA) denture material. Impact strength was determined using a Charpy-type impact tester. The transverse strength and the flexural modulus were assessed with a three-point bending test. The results were subjected to statistical analysis using a one-way analysis of variance and the Scheffé test for comparison.
    RESULTS: The impact strength of the microwave-polymerized injection-molded polymer was 6.3 kl/m2, while its flexural strength was 66.2 MPa. These values were lower than those shown by the two compression-molded PMMA-based polymers. The differences were statistically significant. The flexural modulus of the new denture material was 2,832 MPa, which was higher than the conventional heat-polymerized polymer but was comparable to the other microwave-polymerized PMMA-based polymer. The difference in the flexural modulus was statistically significant.
    CONCLUSION: In terms of the impact and flexural strengths, the new microwave-polymerized, injection-molded, polyurethane-based polymer offered no advantage over the existing heat- and microwave-polymerized PMMA-based denture base polymers. However, it has a rigidity comparable to that of the microwave-polymerized PMMA polymer.
    Matched MeSH terms: Denture Bases*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links