Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Zhang H, Lin J, Yahaya BH
    J Cancer Res Clin Oncol, 2024 Jan 28;150(2):44.
    PMID: 38281298 DOI: 10.1007/s00432-023-05554-9
    BACKGROUND: Transactivating DNA-binding protein 43 (TDP-43) is intimately associated with tumorigenesis and progression by regulating mRNA splicing, transport, stability, and non-coding RNA molecules. The exact role of TDP-43 in lung adenocarcinoma (LUAD) has not yet been fully elucidated, despite extensive research on its function in various cancer types. An imperative aspect of comprehending the underlying biological characteristics associated with TDP-43 involves investigating the genes that are co-expressed with this protein. This study assesses the prognostic significance of these co-expressed genes in LUAD and subsequently explores potential therapeutic strategies based on these findings.

    METHODS: Transcriptomic and clinical data pertaining to LUAD were retrieved from open-access databases to establish an association between mRNA expression profiles and the presence of TDP-43. A risk-prognosis model was developed to compare patient survival rates across various groups, and its accuracy was also assessed. Additionally, differences in tumor stemness, mutational profiles, tumor microenvironment (TME) characteristics, immune checkpoints, and immune cell infiltration were analyzed in the different groups. Moreover, the study entailed predicting the potential response to immunotherapy as well as the sensitivity to commonly employed chemotherapeutic agents and targeted drugs for each distinct group.

    RESULTS: The TDP-43 Co-expressed Gene Risk Score (TCGRS) model was constructed utilizing four genes: Kinesin Family Member 20A (KIF20A), WD Repeat Domain 4 (WDR4), Proline Rich 11 (PRR11), and Glia Maturation Factor Gamma (GMFG). The value of this model in predicting LUAD patient survival is effectively illustrated by both the Kaplan-Meier (K-M) survival curve and the area under the receiver operating characteristic curve (AUC-ROC). The Gene Set Enrichment Analysis (GSEA) revealed that the high TCGRS group was primarily enriched in biological pathways and functions linked to DNA replication and cell cycle; the low TCGRS group showed primary enrichment in immune-related pathways and functions. The high and low TCGRS groups showed differences in tumor stemness, mutational burden, TME, immune infiltration level, and immune checkpoints. The predictions analysis of immunotherapy indicates that the Tumor Immune Dysfunction and Exclusion (TIDE) score (p 

    Matched MeSH terms: DNA-Binding Proteins/genetics
  2. Zahary MN, Kaur G, Hassan MR, Sidek AS, Singh H, Yeh LY, et al.
    Int J Colorectal Dis, 2014 Feb;29(2):261-2.
    PMID: 24072394 DOI: 10.1007/s00384-013-1770-1
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  3. Naim DM, Nor SA, Baharuddin MH
    Genet. Mol. Res., 2011;10(4):2505-10.
    PMID: 22009862 DOI: 10.4238/2011.October.13.7
    The white-bellied sea eagle, Haliaeetus leucogaster, displays reversed sexual size dimorphism and is monomorphic for adult plumage coloration. Early attempts to identify sex in sexually monomorphic birds were based on morphological or chromosomal characters, but since avian W-specific DNA sequences were identified, PCR amplification has become commonly used for molecular sexing. We used a PCR test employing primers that amplify two homologous fragments of both the CHD-W gene, unique to females, and the CHD-Z gene, occurring in both sexes. This test was applied to five individuals of H. leucogaster from the Malacca Zoo and to male and female domestic chickens, Gallus domesticus, for comparison. All individuals were sexed successfully with high reproducibility. We conclude that this PCR-based test with feathers as the DNA source is a reliable sexing method for H. leucogaster. This sexing technique is objective and non-invasive and could be used to test sex ratio theories, as well as to help improve conservation and management actions for captive breeding program of this species in Malaysia.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  4. Al-Absi B, Noor SM, Saif-Ali R, Salem SD, Ahmed RH, Razif MF, et al.
    Tumour Biol., 2017 Apr;39(4):1010428317697573.
    PMID: 28381164 DOI: 10.1177/1010428317697573
    Studies have shown an association between ARID5B gene polymorphisms and childhood acute lymphoblastic leukemia. However, the association between ARID5B variants and acute lymphoblastic leukemia among the Arab population still needs to be studied. The aim of this study was to investigate the association between ARID5B variants with acute lymphoblastic leukemia in Yemeni children. A total of 14 ARID5B gene single nucleotide polymorphisms (SNPs) were genotyped in 289 Yemeni children, of whom 136 had acute lymphoblastic leukemia and 153 were controls, using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Using logistic regression adjusted for age and gender, the risks of acute lymphoblastic leukemia were presented as odds ratios and 95% confidence intervals. We found that nine SNPs were associated with acute lymphoblastic leukemia under additive genetic models: rs7073837, rs10740055, rs7089424, rs10821936, rs4506592, rs10994982, rs7896246, rs10821938, and rs7923074. Furthermore, the recessive models revealed that six SNPs were risk factors for acute lymphoblastic leukemia: rs10740055, rs7089424, rs10994982, rs7896246, rs10821938, and rs7923074. The gender-specific impact of these SNPs under the recessive genetic model revealed that SNPs rs10740055, rs10994982, and rs6479779 in females, and rs10821938 and rs7923074 in males were significantly associated with acute lymphoblastic leukemia risk. Under the dominant model, SNPs rs7073837, rs10821936, rs7896246, and rs6479778 in males only showed striking association with acute lymphoblastic leukemia. The additive model revealed that SNPs with significant association with acute lymphoblastic leukemia were rs10821936 (both males and females); rs7073837, rs10740055, rs10994982, and rs4948487 (females only); and rs7089424, rs7896246, rs10821938, and rs7923074 (males only). In addition, the ARID5B haplotype block (CGAACACAA) showed a higher risk for acute lymphoblastic leukemia. The haplotype (CCCGACTGC) was associated with protection against acute lymphoblastic leukemia. In conclusion, our study has shown that ARID5B variants are associated with acute lymphoblastic leukemia in Yemeni children with several gender biases of ARID5B single nucleotide polymorphisms reported.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  5. Moey LH, Abdul Azize NA, Yakob Y, Leong HY, Keng WT, Chen BC, et al.
    Pediatr Neonatol, 2018 08;59(4):397-403.
    PMID: 29203193 DOI: 10.1016/j.pedneo.2017.11.006
    BACKGROUND: Fructose-1,6-bisphosphatase (FBPase) deficiency is a rare autosomal recessive inborn error of gluconeogenesis. We reported the clinical findings and molecular genetic data in seven Malaysian patients with FBPase deficiency.

    METHODS: All patients diagnosed with FBPase deficiency from 2010 to 2015 were included in this study. Their clinical and laboratory data were collected retrospectively.

    RESULTS: All the patients presented with recurrent episodes of hypoglycemia, metabolic acidosis, hyperlactacidemia and hepatomegaly. All of them had the first metabolic decompensation prior to 2 years old. The common triggering factors were vomiting and infection. Biallelic mutations in FBP1 gene (MIM*611570) were identified in all seven patients confirming the diagnosis of FBPase deficiency. In four patients, genetic study was prompted by detection of glycerol or glycerol-3-phosphate in urine organic acids analysis. One patient also had pseudo-hypertriglyceridemia. Seven different mutations were identified in FBP1, among them four mutations were new: three point deletions (c.392delT, c.603delG and c.704delC) and one splice site mutation (c.568-2A > C). All four new mutations were predicted to be damaging by in silico analysis. One patient presented in the neonatal period and succumbed due to sepsis and multi-organ failure. Among six survivors (current age ranged from 4 to 27 years), four have normal growth and cognitive development. One patient had short stature and another had neurological deficit following status epilepticus due to profound hypoglycemia.

    CONCLUSION: FBPase deficiency needs to be considered in any children with recurrent hypoglycemia and metabolic acidosis. Our study expands the spectrum of FBP1 gene mutations.

    Matched MeSH terms: DNA-Binding Proteins/genetics*
  6. Xin Y, Hao S, Lu J, Wang Q, Zhang L
    PLoS One, 2014;9(4):e95966.
    PMID: 24763305 DOI: 10.1371/journal.pone.0095966
    To comprehensively evaluate the association of ERCC1 C8092A and ERCC2 Lys751Gln polymorphisms with the risk of glioma.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  7. Visuvanathan S, Chong PP, Yap YY, Lim CC, Tan MK, Lye MS
    Asian Pac J Cancer Prev, 2014;15(6):2747-51.
    PMID: 24761895
    BACKGROUND: DNA repair pathways play a crucial role in maintaining the human genome. Previous studies associated DNA repair gene polymorphisms (XPD Lys751Gln, XRCC1 Arg280His and XRCC1 Arg399Gln) with nasopharyngeal carcinoma. These non-synonymous polymorphisms may alter DNA repair capacity and thus increase or decrease susceptibility. The present study aimed to determine the genotype distribution of XPD codon 751, XRCC1 codon 280 and codon 399 polymorphisms and haplotype associations among NPC cases and controls in the Malaysian population.

    MATERIALS AND METHODS: We selected 157 NPC cases and 136 controls from two hospitals in Kuala Lumpur, Malaysia for this study. The polymorphisms studied were genotyped by PCR-RFLP assay and allele and genotype frequencies, haplotype and linkage disequilibrium were determined using SNPstat software.

    RESULTS: For the XPD Lys751Gln polymorphism, the frequency of the Lys allele was higher in cases than in controls (94.5% versus 85.0%). For the XRCC1 Arg280His polymorphism, the frequency of Arg allele was 90.0% and 89.0% in cases and controls, respectively and for XRCC1 Arg399Gln the frequency of the Arg allele was 72.0% and 72.8% in cases and controls respectively. All three polymorphisms were in linkage disequilibrium. The odds ratio from haplotype analysis for these three polymorphisms and their association with NPC was 1.93 (95%CI: 0.90-4.16) for haplotype CGC vs AGC allele combinations. The global haplotype association with NPC gave a p-value of 0.054.

    CONCLUSIONS: Our study provides an estimate of allele and genotype frequencies of XRCC1Arg280His, XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms in the Malaysian population and showed no association with nasopharyngeal cancer.

    Matched MeSH terms: DNA-Binding Proteins/genetics*
  8. Pratama E, Tian X, Lestari W, Iseki S, Ichwan SJ, Ikeda MA
    Biochem Biophys Res Commun, 2015 Dec;468(1-2):248-54.
    PMID: 26519881 DOI: 10.1016/j.bbrc.2015.10.121
    ARID3A and ARID3B are transcriptional targets of p53. Recently, it has been reported that ARID3A plays a critical role in the transcriptional activation of pro-arrest p21 in response to DNA damage. However, the role of ARID3B in the p53 regulatory pathway remains poorly understood. Here we show that ARID3A and ARID3B specifically bind to putative ARID3-binding sites in p53 target genes in vitro and in vivo. ARID3B and, to a lesser extent, ARID3A silencing blocked transcriptional activation of pro-apoptotic p53 target genes, such as PUMA, PIG3, and p53. Furthermore, ectopic ARID3B, to a lesser extent, ARID3A expression activated the pro-apoptotic gene expression, and only ARID3B induced apoptosis. Finally, ARID3B but not ARID3A silencing blocked apoptosis induction following DNA damage. These results indicated that, although ARID3B and ARID3A share overlapping functions, ARID3B play a key role in the expression of pro-apoptotic p53-target genes and apoptosis.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  9. Salemi S, Besson A, Eblé A, Gallati S, Pfäffle RW, Mullis PE
    Growth Horm. IGF Res., 2003 Oct;13(5):264-8.
    PMID: 12932747
    OBJECTIVE: Growth is an inherent property of life. About 10% of the congenital forms of growth retardation and short stature are genetically caused. Beside the gene involved in direct GH-production, there are different candidate genes important for appropriate pituitary development causing combined pituitary hormone deficiency (CPHD). However, severe growth retardation and failure to thrive remain the leading reason for medical assessment in these patients.

    PATIENTS AND METHODS: We report two siblings of a healthy but consanguineous Malaysian family presenting with severe short stature caused by CPHD with a variable phenotype. Importantly, at the beginning the girl presented with isolated GHD, whereas the boy was hypothyroid. As the most common gene alterations responsible for CPHD are within either the PROP-1- or the POU1F1- (PIT-1)-gene these two genes were further studied.

    RESULTS: Subsequent sequencing of the six exons of the POU1F1-gene allowed the identification of a new N-terminal mutation (Q4ter) in these two children. A substitution of C to T induced a change from a glutamine (CAA) to a stop codon (TAA) in exon 1 of the PIT-1 protein. Both affected children were homozygous for the mutation, whereas the mother and father were heterozygous.

    CONCLUSION: We describe two children with autosomal recessive inherited CPHD caused by a new N-terminal located mutation within the PUO1F1-gene. The clinical history of these two children underline the phenotypic variability and support the fact that children with any isolated and/or combined PHD need to be closely followed as at an any time other hormonal deficiencies may occur. In addition, molecular analysis of the possible genes involved might be most helpful for the future follow-up.

    Matched MeSH terms: DNA-Binding Proteins/genetics*
  10. Ma XR, Edmund Sim UH, Pauline B, Patricia L, Rahman J
    Trop Biomed, 2008 Apr;25(1):46-57.
    PMID: 18600204 MyJurnal
    Colorectal carcinoma (CRC) arises as a result of mutational activation of oncogenes coupled with inactivation of tumour suppressor genes. Mutations in APC, K-ras and p53 have been commonly reported. In a previous study by our group, the tumour susceptibility gene 101 (TSG101) were found to be persistently upregulated in CRC cases. TSG101 was reported to be closely related to cancers of the breast, brain and colon, and its overexpression in human papillary thyroid carcinomas and ovarian carcinomas had previously been reported. The wingless-type MMTV integration site family member 2 (WNT2) is potentially important in the Wnt/beta-catenin pathway and upregulation of WNT2 is not uncommon in human cancers. In this study, we report the investigation for mutation(s) and expression pattern(s) of WNT2 and TSG101, in an effort to further understand their role(s) in CRC tumourigenesis. Our results revealed no mutation in these genes, despite their persistent upregulation in CRC cases studied.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  11. Yogarajah T, Ong KC, Perera D, Wong KT
    J Virol, 2018 03 15;92(6).
    PMID: 29263272 DOI: 10.1128/JVI.01914-17
    Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) are closely related enteroviruses that cause the same hand, foot, and mouth disease (HFMD), but neurological complications occur only very rarely in CV-A16 compared to EV-A71 infections. To elucidate host responses that may be able to explain these differences, we performed transcriptomic analysis and real-time quantitative PCR (RT-qPCR) in CV-A16-infected neuroblastoma cells (SK-N-SH), and the results showed that the radical S-adenosylmethionine domain containing 2 (RSAD2) was the highest upregulated gene in the antimicrobial pathway. Increased RSAD2 expression was correlated with reduced viral replication, while RSAD2 knockdown cells were correlated with increased replication. EV-A71 replication showed no apparent correlation to RSAD2 expressions. Absent in melanoma 2 (AIM2), which is associated with pyroptotic cell death, was upregulated in EV-A71-infected neurons but not in CV-A16 infection, suggesting that the AIM2 inflammasome played a significant role in suppressing EV-A71 replication. Chimeric viruses derived from CV-A16 and EV-A71 but containing swapped 5' nontranslated regions (5' NTRs) showed that RSAD2 expression/viral replication and AIM2 expression/viral replication patterns may be linked to the 5' NTRs of parental viruses. Differences in secondary structure of internal ribosomal entry sites within the 5' NTR may be responsible for these findings. Overall, our results suggest that CV-A16 and EV-A71 elicit different host responses to infection, which may help explain the apparent lower incidence of CV-A16-associated neurovirulence in HFMD outbreaks compared to EV-A71 infection.IMPORTANCE Although coxsackievirus A16 (CV-A16) and enterovirus A17 (EV-A71) both cause hand, foot, and mouth disease, EV-A71 has emerged as a leading cause of nonpolio, enteroviral fatal encephalomyelitis among young children. The significance of our research is in the identification of the possible differing and novel mechanisms of CV-A16 and EV-A71 inhibition in neuronal cells that may impact viral neuropathogenesis. We further showed that viral 5' NTRs may play significant roles in eliciting different host response mechanisms.
    Matched MeSH terms: DNA-Binding Proteins/genetics
  12. Kotaki R, Higuchi H, Ogiya D, Katahira Y, Kurosaki N, Yukihira N, et al.
    Int J Hematol, 2017 Dec;106(6):811-819.
    PMID: 28831750 DOI: 10.1007/s12185-017-2314-1
    miR-1 and miR-133 are clustered on the same chromosomal loci and are transcribed together as a single transcript that is positively regulated by ecotropic virus integration site-1 (EVI1). Previously, we described how miR-133 has anti-tumorigenic potential through repression of EVI1 expression. It has also been reported that miR-1 is oncogenic in the case of acute myeloid leukemia (AML). Here, we show that expression of miR-1 and miR-133, which have distinct functions, is differentially regulated between AML cell lines. Interestingly, the expression of miR-1 and EVI1, which binds to the promoter of the miR-1/miR-133 cluster, is correlative. The expression levels of TDP-43, an RNA-binding protein that has been reported to increase the expression, but inhibits the activity, of miR-1, were not correlated with expression levels of miR-1 in AML cells. Taken together, our observations raise the possibility that the balance of polycistronic miRNAs is regulated post-transcriptionally in a hierarchical manner possibly involving EVI1, suggesting that the deregulation of this balance may play some role in AML cells with high EVI1 expression.
    Matched MeSH terms: DNA-Binding Proteins/genetics
  13. Easton DF, Lesueur F, Decker B, Michailidou K, Li J, Allen J, et al.
    J Med Genet, 2016 May;53(5):298-309.
    PMID: 26921362 DOI: 10.1136/jmedgenet-2015-103529
    BACKGROUND: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction.

    METHODS: We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia.

    RESULTS: The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75).

    CONCLUSIONS: These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels.

    Matched MeSH terms: DNA-Binding Proteins/genetics*
  14. Omidvar V, Abdullah SN, Ho CL, Mahmood M, Al-Shanfari AB
    Mol Biol Rep, 2012 Sep;39(9):8907-18.
    PMID: 22722992 DOI: 10.1007/s11033-012-1758-x
    Abscisic acid (ABA) is an important phytohormone involved in the abiotic stress resistance in plants. The ABA-responsive element (ABRE) binding factors play significant roles in the plant development and response to abiotic stresses, but none so far have been isolated and characterized from the oil palm. Two ABA-responsive cDNA clones, named EABF and EABF1, were isolated from the oil palm fruits using yeast one-hybrid system. The EABF had a conserved AP2/EREBP DNA-binding domain (DNA-BD) and a potential nuclear localization sequence (NLS). No previously known DNA-BD was identified from the EABF1 sequence. The EABF and EABF1 proteins were classified as DREB/CBF and bZIP family members based on the multiple sequence alignment and phylogenetic analysis. Both proteins showed ABRE-binding and transcriptional activation properties in yeast. Furthermore, both proteins were able to trans-activate the down-stream expression of the LacZ reporter gene in yeast. An electrophoretic mobility shift assay revealed that in addition to the ABRE sequence, both proteins could bind to the DRE sequence as well. Transcriptional analysis revealed that the expression of EABF was induced in response to the ABA in the oil palm fruits and leaves, but not in roots, while the EABF1 was constitutively induced in all tissues. The expressions of both genes were strongly induced in fruits in response to the ABA, ethylene, methyl jasmonate, drought, cold and high-salinity treatments, indicating that the EABF and EABF1 might act as connectors among different stress signal transduction pathways. Our results indicate that the EABF and EABF1 are novel stress-responsive transcription factors, which are involved in the abiotic stress response and ABA signaling in the oil palm and could be used for production of stress-tolerant transgenic crops.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  15. Halim NH, Chong ET, Goh LP, Chuah JA, See EU, Chua KH, et al.
    Asian Pac J Cancer Prev, 2016;17(4):1925-31.
    PMID: 27221877
    BACKGROUND: The XRCC1 protein facilitates various DNA repair pathways; single-nucleotide polymorphisms (SNPs) in this gene are associated with a risk of gastrointestinal cancer (GIC) with inconsistent results, but no data have been previously reported for the Sabah, North Borneo, population. We accordingly investigated the XRCC1 Arg194Trp and Arg399Gln SNPs in terms of GIC risk in Sabah.

    MATERIALS AND METHODS: We performed genotyping for both SNPs for 250 GIC patients and 572 healthy volunteers using a polymerase chain reaction- restriction fragment length polymorphism approach. We validated heterozygosity and homozygosity for both SNPs using direct sequencing.

    RESULTS: The presence of a variant 194Trp allele in the Arg194Trp SNP was significantly associated with a higher risk of GIC, especially with gastric and colorectal cancers. We additionally found that the variant 399Gln allele in Arg399Gln SNP was associated with a greater risk of developing gastric cancer. Our combined analysis revealed that inheritance of variant alleles in both SNPs increased the GIC risk in Sabah population. Based on our etiological analysis, we found that subjects ≥50 years and males who carrying the variant 194Trp allele, and Bajau subjects carrying the 399Gln allele had a significantly increased risk of GIC.

    CONCLUSIONS: Our findings suggest that inheritance of variant alleles in XRCC1 Arg194Trp and Arg399Gln SNPs may act as biomarkers for the early detection of GIC, especially for gastric and colorectal cancers in the Sabah population.

    Matched MeSH terms: DNA-Binding Proteins/genetics*
  16. Chong ET, Goh LP, See EU, Chuah JA, Chua KH, Lee PC
    Asian Pac J Cancer Prev, 2016;17(2):647-53.
    PMID: 26925658
    BACKGROUND: Breast cancer is the most common type of cancer affecting Malaysian women. Recent statistics revealed that the cumulative probability of breast cancer and related deaths in Malaysia is higher than in most of the countries of Southeast Asia. Single nucleotide polymorphisms (SNPs) in CYP2E1 (rs6413432 and rs3813867), STK15 (rs2273535 and rs1047972) and XRCC1 (rs1799782 and rs25487) have been associated with breast cancer risk in a meta-analysis but any link in Southeast Asia, including Malaysia, remained to be determined. Hence, we investigated the relationship between these SNPs and breast cancer risk among Malaysian women in the present case-control study.

    MATERIALS AND METHODS: Genomic DNA was isolated from peripheral blood of 71 breast cancer patients and 260 healthy controls and subjected to polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis.

    RESULTS: Our study showed that the c1/c2 genotype or subjects with at least one c2 allele in CYP2E1 rs3813867 SNP had significantly increased almost 1.8-fold higher breast cancer risk in Malaysian women overall. In addition, the variant Phe allele in STK15 rs2273535 SNP appeared to protect against breast cancer in Malaysian Chinese. No significance association was found between XRCC1 SNPs and breast cancer risk in the population.

    CONCLUSIONS: This study provides additional knowledge on CYP2E1, STK15 and XRCC1 SNP impact of risk of breast cancer, particularly in the Malaysian population. From our findings, we also recommend Malaysian women to perform breast cancer screening before 50 years of age.

    Matched MeSH terms: DNA-Binding Proteins/genetics*
  17. Paulraj F, Abas F, Lajis NH, Othman I, Hassan SS, Naidu R
    Molecules, 2015;20(7):11830-60.
    PMID: 26132907 DOI: 10.3390/molecules200711830
    In an effort to study curcumin analogues as an alternative to improve the therapeutic efficacy of curcumin, we screened the cytotoxic potential of four diarylpentanoids using the HeLa and CaSki cervical cancer cell lines. Determination of their EC50 values indicated relatively higher potency of 1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one (MS17, 1.03 ± 0.5 μM; 2.6 ± 0.9 μM) and 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13, 2.8 ± 0.4; 6.7 ± 2.4 μM) in CaSki and HeLa, respectively, with significantly greater growth inhibition at 48 and 72 h of treatment compared to the other analogues or curcumin. Based on cytotoxic and anti-proliferative activity, MS17 was selected for comprehensive apoptotic studies. At 24 h of treatment, fluorescence microscopy detected that MS17-exposed cells exhibited significant morphological changes consistent with apoptosis, corroborated by an increase in nucleosomal enrichment due to DNA fragmentation in HeLa and CaSki cells and activation of caspase-3 activity in CaSki cells. Quantitative real-time PCR also detected significant down-regulation of HPV18- and HPV16-associated E6 and E7 oncogene expression following treatment. The overall data suggests that MS17 treatment has cytotoxic, anti-proliferative and apoptosis-inducing potential in HPV-positive cervical cancer cells. Furthermore, its role in down-regulation of HPV-associated oncogenes responsible for cancer progression merits further investigation into its chemotherapeutic role for cervical cancer.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  18. Ahmad Aizat AA, Siti Nurfatimah MS, Aminudin MM, Ankathil R
    World J Gastroenterol, 2013 Jun 21;19(23):3623-8.
    PMID: 23801864 DOI: 10.3748/wjg.v19.i23.3623
    To investigate the risk association of xeroderma pigmentosum group C (XPC) Lys939Gln polymorphism alone and in combination with cigarette smoking on colorectal cancer (CRC) predisposition.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  19. Fischer H, Tschachler E, Eckhart L
    Apoptosis, 2020 08;25(7-8):474-480.
    PMID: 32533513 DOI: 10.1007/s10495-020-01614-4
    The release of DNA into the cytoplasm upon damage to the nucleus or during viral infection triggers an interferon-mediated defense response, inflammation and cell death. In human cells cytoplasmic DNA is sensed by cyclic GMP-AMP Synthase (cGAS) and Absent In Melanoma 2 (AIM2). Here, we report the identification of a "natural knockout" model of cGAS. Comparative genomics of phylogenetically diverse mammalian species showed that cGAS and its interaction partner Stimulator of Interferon Genes (STING) have been inactivated by mutations in the Malayan pangolin whereas other mammals retained intact copies of these genes. The coding sequences of CGAS and STING1 are also disrupted by premature stop codons and frame-shift mutations in Chinese and tree pangolins, suggesting that expression of these genes was lost in a common ancestor of all pangolins that lived more than 20 million years ago. AIM2 is retained in a functional form in pangolins whereas it is inactivated by mutations in carnivorans, the phylogenetic sister group of pangolins. The deficiency of cGAS and STING points to the existence of alternative mechanisms of controlling cytoplasmic DNA-associated cell damage and viral infections in pangolins.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  20. Zhang L, Feng XK, Ng YK, Li SC
    BMC Genomics, 2016 Aug 18;17 Suppl 4:430.
    PMID: 27556418 DOI: 10.1186/s12864-016-2791-2
    BACKGROUND: Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues.

    RESULTS: In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer's disease; 2. ZNF329 and RB1 significantly regulate those 'mesenchymal' gene expression signature genes for brain tumors.

    CONCLUSION: By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.

    Matched MeSH terms: DNA-Binding Proteins/genetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links