Frullania subgenus Microfrullania is a clade of ca. 15 liverwort species occurring in Australasia, Malesia, and southern South America. We used combined nuclear and chloroplast sequence data from 265 ingroup accessions to test species circumscriptions and estimate the biogeographic history of the subgenus. With dense infra-specific sampling, we document an important role of long-distance dispersal in establishing phylogeographic patterns of extant species. At deeper time scales, a combination of phylogenetic analyses, divergence time estimation and ancestral range estimation were used to reject vicariance and to document the role of long-distance dispersal in explaining the evolution and biogeography of the clade across the southern Hemisphere. A backbone phylogeny for the subgenus is proposed, providing insight into evolution of morphological patterns and establishing the basis for an improved sectional classification of species within Microfrullania. Several species complexes are identified, the presence of two undescribed but genetically and morphologically distinct species is noted, and previously neglected names are discussed.
Dehydration-responsive element binding (DREB) transcription factor plays an important role in controlling the expression of abiotic stress responsive genes. An intronless oil palm EgDREB1 was isolated and confirmed to be a nuclear localized protein. Electrophoretic mobility shift and yeast one-hybrid assays validated its ability to interact with DRE/CRT motif. Its close evolutionary relation to the dicot NtDREB2 suggests a universal regulatory role. In order to determine its involvement in abiotic stress response, functional characterization was performed in oil palm seedlings subjected to different levels of drought severity and in EgDREB1 transgenic tomato seedlings treated by abiotic stresses. Its expression in roots and leaves was compared with several antioxidant genes using quantitative real-time PCR. Early accumulation of EgDREB1 in oil palm roots under mild drought suggests possible involvement in the initiation of signaling communication from root to shoot. Ectopic expression of EgDREB1 in T1 transgenic tomato seedlings enhanced expression of DRE/CRT and non-DRE/CRT containing genes, including tomato peroxidase (LePOD), ascorbate peroxidase (LeAPX), catalase (LeCAT), superoxide dismutase (LeSOD), glutathione reductase (LeGR), glutathione peroxidase (LeGP), heat shock protein 70 (LeHSP70), late embryogenesis abundant (LeLEA), metallothionine type 2 (LeMET2), delta 1-pyrroline-5- carboxylate synthetase (LePCS), ABA-aldehyde oxidase (LeAAO) and 9-cis- Epoxycarotenoid dioxygenase (LeECD) under PEG treatment and cold stress (4 °C). Altogether, these findings suggest that EgDREB1 is a functional regulator in enhancing tolerance to drought and cold stress.