Displaying all 10 publications

Abstract:
Sort:
  1. Hayyan M, Hashim MA, Al-Saadi MA, Hayyan A, AlNashef IM, Mirghani ME
    Chemosphere, 2013 Sep;93(2):455-9.
    PMID: 23820537 DOI: 10.1016/j.chemosphere.2013.05.013
    In this work, the cytotoxicity and toxicity of phosphonium-based deep eutectic solvents (DESs) with three hydrogen bond donors, namely glycerine, ethylene glycol, and triethylene glycol were investigated. The cytotoxicity effect was tested using brine shrimp (Artemia salina). The toxicity was investigated using the two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The cytotoxicity of tested DESs was much higher than that of their individual components, indicating their toxicological behavior was different. It was also found that there was toxic effect on the studied bacteria, indicating their potential application as anti-bacterial agents. To the best of our knowledge, this is the first time the cytotoxicity and toxicity of phosphonium-based DESs were studied.
    Matched MeSH terms: Cytotoxins/chemistry*
  2. Ismail S, Jalilian FA, Talebpour AH, Zargar M, Shameli K, Sekawi Z, et al.
    Biomed Res Int, 2013;2013:696835.
    PMID: 23484141 DOI: 10.1155/2013/696835
    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent.
    Matched MeSH terms: Cytotoxins/chemistry*
  3. Najim N, Bathich Y, Zain MM, Hamzah AS, Shaameri Z
    Molecules, 2010 Dec 17;15(12):9340-53.
    PMID: 21169884 DOI: 10.3390/molecules15129340
    The aim of this study was to investigate the in vitro cellular activity of novel spiroisoxazoline type compounds against normal and cancer cell lines from lung tissue (Hs888Lu), neuron-phenotypic cells (SH-SY5Y), neuroblastoma (SH-SY5Y), human histiocytic lymphoma (U937), lung cancer (A549), and leukaemia (HL-60). Our bioassay program revealed that the spiroisoxazoline type compounds show cytotoxicity only in lymphoma cell lines, which is in contrast with the pyrrolidine precursor of these spiroisoxazoline compounds, where significant cytotoxicity is seen in all normal and cancer cell lines. These data suggest a tumour-specific mechanism of action. In addition these data also show that spiroisoxazoline compounds are non-toxic in the human neuronphenotypic neuroblastoma SH-SY5Y cell line, and furthermore that they might protect cells from neurodegenerative disease.
    Matched MeSH terms: Cytotoxins/chemistry
  4. Teh SS, Ee GC, Mah SH, Yong YK, Lim YM, Rahmani M, et al.
    Biomed Res Int, 2013;2013:517072.
    PMID: 24089682 DOI: 10.1155/2013/517072
    The in vitro cytotoxicity tests on the extracts of Mesua beccariana, M. ferrea, and M. congestiflora against Raji, SNU-1, HeLa, LS-174T, NCI-H23, SK-MEL-28, Hep-G2, IMR-32, and K562 were achieved using MTT assay. The methanol extracts of Mesua beccariana showed its potency towards the proliferation of B-lymphoma cell (Raji). In addition, only the nonpolar to semipolar extracts (hexane to ethyl acetate) of the three Mesua species indicated cytotoxic effects on the tested panel of human cancer cell lines. Antioxidant assays were evaluated using DPPH scavenging radical assay and Folin-Ciocalteu method. The methanol extracts of M. beccariana and M. ferrea showed high antioxidant activities with low EC₅₀ values of 12.70 and 9.77  μg/mL, respectively, which are comparable to that of ascorbic acid (EC₅₀ = 5.62  μg/mL). Antibacterial tests were carried out using four Gram positive and four Gram negative bacteria on Mesua beccariana extracts. All the extracts showed negative results in the inhibition of Gram negative bacteria. Nevertheless, methanol extracts showed some activities against Gram positive bacteria which are Bacillus cereus, methicillin-sensitive Staphylococcus aureus (MSSA), and methicillin-resistant Staphylococcus aureus (MRSA), while the hexane extract also contributed some activities towards Bacillus cereus.
    Matched MeSH terms: Cytotoxins/chemistry
  5. Alshaibani M, Zin NM, Jalil J, Sidik N, Ahmad SJ, Kamal N, et al.
    J Microbiol Biotechnol, 2017 07 28;27(7):1249-1256.
    PMID: 28535606 DOI: 10.4014/jmb.1608.08032
    In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo-(L-Val-L-Pro), cyclo-(L-Leu-L-Pro), cyclo-(L-Phe-L-Pro), cyclo-(L-Val-L-Phe), and N-(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus, with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.
    Matched MeSH terms: Cytotoxins/chemistry
  6. Ibrahim MD, Kntayya SB, Mohd Ain N, Iori R, Ioannides C, Abdull Razis AF
    Molecules, 2018 Nov 27;23(12).
    PMID: 30486382 DOI: 10.3390/molecules23123092
    Glucoraphasatin (GRH), a glucosinolate present abundantly in the plants of the Brassicaceae family, is hydrolyzed by myrosinase to raphasatin, which is considered responsible for its cancer chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aims of this study are to determine the cytotoxicity of raphasatin, and to evaluate its potential to cause apoptosis and modulate cell cycle arrest in human breast adenocarcinoma MCF-7 cells. The cytotoxicity was determined following incubation of the cells with glucoraphasatin or raphasatin (0⁻100 µM), for 24, 48, and 72 h. GRH displayed no cytotoxicity as exemplified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. When myrosinase was added to the incubation system to convert GRH to raphasatin, cytotoxicity was evident. Exposure of the cells to raphasatin stimulated apoptosis, as was exemplified by cell shrinkage, membrane blebbing, chromatin condensation, and nuclear fragmentation. Moreover, using Annexin V-FITC assay, raphasatin induced apoptosis, as witnessed by changes in cellular distribution of cells, at different stages of apoptosis; in addition, raphasatin caused the arrest of the MCF-7 cells at the G₂ + M phase. In conclusion, raphasatin demonstrated cancer chemopreventive potential against human breast adenocarcinoma (MCF-7) cells, through induction of apoptosis and cell cycle arrest.
    Matched MeSH terms: Cytotoxins/chemistry
  7. Vafaei A, Bin Mohamad J, Karimi E
    Nat Prod Res, 2019 Sep;33(17):2531-2535.
    PMID: 29527930 DOI: 10.1080/14786419.2018.1448810
    In this study the antioxidant and cytotoxicity activity of the Adonidia merrillii fruits were investigated using different solvent polarities (methanol, ethyl acetate and water). The results showed that the total phenolic and flavonoid contents of the methanolic extract was higher compare with other extract with respective values of 17.80 ± 0.45 mg gallic acid equivalents/g dry weight (DW) and 5.43 ± 0.33 mg rutin equivalents/g DW. Beside that The RP-HPLC analyses indicated the presence of gallic acid, pyrogallol, caffeic acid, vanillic acid, syringic acid, naringin and rutin. In the DPPH, NO2 and ABTS scavenging assays, the methanolic extract exhibited higher antioxidant activity as compared to the ethyl acetate and water extracts. The extracts exhibited moderate to weak cytotoxic activity in the assays using human hepatocytes (Chang liver cells) and NIH/3T3 (fibroblasts cell) cell lines. The findings showed the Adonidia merrillii fruit extracts to possess considerable antioxidant and cytotoxicity properties. The fruit, therefore, is a potential candidate for further work to discover antioxidant and cytotoxic drugs from natural sources.
    Matched MeSH terms: Cytotoxins/chemistry
  8. Omar H, Hashim NM, Zajmi A, Nordin N, Abdelwahab SI, Azizan AH, et al.
    Molecules, 2013 Jul 29;18(8):8994-9009.
    PMID: 23899833 DOI: 10.3390/molecules18088994
    The oxoaporphine alkaloid lysicamine (1), and three proaporphine alkaloids, litsericinone (2), 8,9,11,12-tetrahydromecambrine (3) and hexahydromecambrine A (4) were isolated from the leaves of Phoebe grandis (Nees) Merr. (Lauraceae). Compounds 2 and 3 were first time isolated as new naturally occurring compounds from plants. The NMR data for the compounds 2-4 have never been reported so far. Compounds 1 and 2 showed significant cytotoxic activity against a MCF7 (human estrogen receptor (ER+) positive breast cancer) cell line with IC₅₀ values of 26 and 60 µg/mL, respectively. Furthermore, in vitro cytotoxic activity against HepG2 (human liver cancer) cell line was evaluated for compounds 1-4 with IC₅₀ values of 27, 14, 81 and 20 µg/mL, respectively. Lysicamine (1) displayed strong antibacterial activity against Bacillus subtilis (B145), Staphylococcus aureus (S1434) and Staphylococus epidermidis (a clinically isolated strain) with inhibition zones of 15.50 ± 0.57, 13.33 ± 0.57 and 12.00 ± 0.00 mm, respectively. However, none of the tested pathogenic bacteria were susceptible towards compounds 2 and 3.
    Matched MeSH terms: Cytotoxins/chemistry
  9. Ling LT, Radhakrishnan AK, Subramaniam T, Cheng HM, Palanisamy UD
    Molecules, 2010 Apr;15(4):2139-51.
    PMID: 20428033 DOI: 10.3390/molecules15042139
    Thirteen Malaysian plants; Artocarpus champeden, Azadirachta indica, Fragaria x ananassa, Garcinia mangostana, Lawsonia inermis, Mangifera indica, Nephelium lappaceum, Nephelium mutobile, Peltophorum pterocarpum, Psidium guajava and Syzygium aqueum, selected for their use in traditional medicine, were subjected to a variety of assays. Antioxidant capability, total phenolic content, elemental composition, as well as it cytotoxity to several cell lines of the aqueous and ethanolic extracts from different parts of these selected Malaysian plants were determined. In general, the ethanolic extracts were better free radical scavengers than the aqueous extracts and some of the tested extracts were even more potent than a commercial grape seed preparation. Similar results were seen in the lipid peroxidation inhibition studies. Our findings also showed a strong correlation of antioxidant activity with the total phenolic content. These extracts when tested for its heavy metals content, were found to be below permissible value for nutraceutical application. In addition, most of the extracts were found not cytotoxic to 3T3 and 4T1 cells at concentrations as high as 100 microg/mL. We conclude that although traditionally these plants are used in the aqueous form, its commercial preparation could be achieved using ethanol since a high total phenolic content and antioxidant activity is associated with this method of preparation.
    Matched MeSH terms: Cytotoxins/chemistry
  10. Nirthanan S, Charpantier E, Gopalakrishnakone P, Gwee MC, Khoo HE, Cheah LS, et al.
    Br J Pharmacol, 2003 Jun;139(4):832-44.
    PMID: 12813007
    1 Candoxin (MW 7334.6), a novel toxin isolated from the venom of the Malayan krait Bungarus candidus, belongs to the poorly characterized subfamily of nonconventional three-finger toxins present in Elapid venoms. The current study details the pharmacological effects of candoxin at the neuromuscular junction. 2 Candoxin produces a novel pattern of neuromuscular blockade in isolated nerve-muscle preparations and the tibialis anterior muscle of anaesthetized rats. In contrast to the virtually irreversible postsynaptic neuromuscular blockade produced by curaremimetic alpha-neurotoxins, the neuromuscular blockade produced by candoxin was rapidly and completely reversed by washing or by the addition of the anticholinesterase neostigmine. 3 Candoxin also produced significant train-of-four fade during the onset of and recovery from neuromuscular blockade, both, in vitro and in vivo. The fade phenomenon has been attributed to a blockade of putative presynaptic nicotinic acetylcholine receptors (nAChRs) that mediate a positive feedback mechanism and maintain adequate transmitter release during rapid repetitive stimulation. In this respect, candoxin closely resembles the neuromuscular blocking effects of d-tubocurarine, and differs markedly from curaremimetic alpha-neurotoxins that produce little or no fade. 4 Electrophysiological experiments confirmed that candoxin produced a readily reversible blockade (IC(50) approximately 10 nM) of oocyte-expressed muscle (alphabetagammadelta) nAChRs. Like alpha-conotoxin MI, well known for its preferential binding to the alpha/delta interface of the muscle (alphabetagammadelta) nAChR, candoxin also demonstrated a biphasic concentration-response inhibition curve with a high- (IC(50) approximately 2.2 nM) and a low- (IC(50) approximately 98 nM) affinity component, suggesting that it may exhibit differential affinities for the two binding sites on the muscle (alphabetagammadelta) receptor. In contrast, curaremimetic alpha-neurotoxins have been reported to antagonize both binding sites with equal affinity.
    Matched MeSH terms: Cytotoxins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links