Displaying all 2 publications

Abstract:
Sort:
  1. Kuppusamy UR, Chong YL, Mahmood AA, Indran M, Abdullah N, Vikineswary S
    Indian J. Biochem. Biophys., 2009 Apr;46(2):161-5.
    PMID: 19517993
    Lentinula edodes (Berk) Pegler, commonly known as Shiitake mushroom has been used as medicinal food in Asian countries, especially in China and Japan and is believed to possess strong immunomodulatory property. In the present study, the methanolic extract of the fruit bodies of L. edodes was investigated for cytoprotective effect against H2O2-induced cytotoxicity in human peripheral blood mononuclear cells (PBMCs) by measuring the activities of xanthine oxidase (XO) and glutathione peroxidase (GPx) . H2O2 at a concentration of 5 microM caused 50% inhibition of PBMCs viability. The extract improved the PBMC viability and exerted a dose-dependent protection against H2O2-induced cytotoxicity. At 100 microg/ml of extract concentration, the cell viability increased by 60% compared with the PBMCs incubated with H2O2 alone. The extract also inhibited XO activity in PBMC, while showing moderate stimulatory effect on GPx. However, in the presence of H2O2 alone, both the enzyme activities were increased significantly. The GPx activity increased, possibly in response to the increased availability of H2O2 in the cell. When the cells were pretreated with the extract and washed (to remove the extract) prior to the addition of H2O2, the GPx and XO activities as well as the cell viability were comparable to those when incubated with the extract alone. Thus, it is suggested that one of the possible mechanisms via which L. edodes methanolic extract confers protection against H2O2-induced oxidative stress in PBMC is by inhibiting the superoxide-producing XO and increasing GPx activity which could rapidly inactivate H2O2.
    Matched MeSH terms: Cytotoxins/antagonists & inhibitors*
  2. Mazlan M, Sue Mian T, Mat Top G, Zurinah Wan Ngah W
    J Neurol Sci, 2006 Apr 15;243(1-2):5-12.
    PMID: 16442562
    Oxidative stress is thought to be one of the factors that cause neurodegeneration and that this can be inhibited by antioxidants. Since astrocytes support the survival of central nervous system (CNS) neurons, we compared the effect of alpha-tocopherol and gamma-tocotrienol in minimizing the cytotoxic damage induced by H(2)O(2), a pro-oxidant. Primary astrocyte cultures were pretreated with either alpha-tocopherol or gamma-tocotrienol for 1 h before incubation with 100 microM H(2)O(2) for 24 h. Cell viability was then assessed using the MTS assay while apoptosis was determined using a commercial ELISA kit as well as by fluorescent staining of live and apoptotic cells. The uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes were also determined using HPLC. Results showed that gamma-tocotrienol is toxic at concentrations >200 microM but protects against H(2)O(2) induced cell loss and apoptosis in a dose dependent manner up to 100 microM. alpha-Tocopherol was not cytotoxic in the concentration range tested (up to 750 microM), reduced apoptosis to the same degree as that of gamma-tocotrienol but was less effective in maintaining the viable cell number. Since the uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes is similar, this may reflect the roles of these 2 vitamin E subfamilies in inhibiting apoptosis and stimulating proliferation in astrocytes.
    Matched MeSH terms: Cytotoxins/antagonists & inhibitors
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links