Displaying all 2 publications

Abstract:
Sort:
  1. Ahmad MR, Nakajima M, Kojima M, Kojima S, Homma M, Fukuda T
    IEEE Trans Nanobioscience, 2012 Mar;11(1):70-8.
    PMID: 22275723 DOI: 10.1109/TNB.2011.2179809
    In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line array substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line array substrate were used, i.e., 1 μm and 2 μm. Results showed that cells attached on the 1 μm gap line array substrate required more force to be released as compared to the cells attached on the 1 μm gap line array substrate.
    Matched MeSH terms: Cytological Techniques/instrumentation*
  2. Md Ali MA, Kayani ABA, Yeo LY, Chrimes AF, Ahmad MZ, Ostrikov KK, et al.
    Biomed Microdevices, 2018 11 06;20(4):95.
    PMID: 30402766 DOI: 10.1007/s10544-018-0341-1
    Cell contact formation, which is the process by which cells are brought into close proximity is an important biotechnological process in cell and molecular biology. Such manipulation is achieved by various means, among which dielectrophoresis (DEP) is widely used due to its simplicity. Here, we show the advantages in the judicious choice of the DEP microelectrode configuration in terms of limiting undesirable effects of dielectric heating on the cells, which could lead to their inactivation or death, as well as the possibility for cell clustering, which is particularly advantageous over the linear cell chain arrangement typically achieved to date with DEP. This study comprises of experimental work as well as mathematical modeling using COMSOL. In particular, we establish the parameters in a capillary-based microfluidic system giving rise to these optimum cell-cell contact configurations, together with the possibility for facilitating other cell manipulations such as spinning and rotation, thus providing useful protocols for application into microfluidic bioparticle manipulation systems for diagnostics, therapeutics or for furthering research in cellular bioelectricity and intercellular interactions.
    Matched MeSH terms: Cytological Techniques/instrumentation*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links