Displaying all 7 publications

Abstract:
Sort:
  1. Mu Y, Tong J, Wang Y, Yang Y, Wu X
    Front Immunol, 2023;14:1213161.
    PMID: 37457710 DOI: 10.3389/fimmu.2023.1213161
    Adoptive transfer of natural killer (NK) cells represents a viable treatment method for patients with advanced malignancies. Our team previously developed a simple, safe, and cost-effective method for obtaining high yields of pure and functional NK cells from cord blood (CB) without the need for cell sorting, feeder cells, or multiple cytokines. We present the case of a 52-year-old female patient diagnosed with poorly differentiated stage IVB (T3N2M1) endometrial cancer, who exhibited leukemoid reaction and pretreatment thrombocytosis as paraneoplastic syndromes. The patient received two courses of CB-derived NK (CB-NK) cell immunotherapy between March and September 2022, due to her extremely low NK cell activity. Two available CB units matched at 8/10 HLA with KIR-mismatch were chosen, and we were able to produce NK cells with high yield (>1.0×1010 NK cells), purity (>90%), and function (>80%) from CB without cell sorting, feeder cells, or multiple cytokines. These cells were then adoptively transferred to the patient. No adverse effects or graft-versus-host disease were observed after infusion of CB-NK cells. Our clinical experience supports the efficacy of CB-NK cell treatment in increasing NK cell activity, depleting tumor activity, improving quality of life, and reducing the size of abdominal and pelvic masses with the disappearance of multiple lymph node metastases through the regulation of systemic antitumor immunity. Remarkably, the white blood cell and platelet counts decreased to normal levels after CB-NK cell immunotherapy. This clinical work suggests that CB-NK cell immunotherapy holds promise as a therapeutic approach for endometrial cancer.
    Matched MeSH terms: Cytokines/pharmacology
  2. Yap WH, Cheah TY, Yong LC, Chowdhury SR, Ng MH, Kwan Z, et al.
    J Biosci, 2021;46.
    PMID: 34475316
    Psoriasis is a chronic skin disease characterized by thickening and disorganization of the skin's protective barrier. Although current models replicate some aspects of the disease, development of therapeutic strategies have been hindered by absence of more relevant models. This study aimed to develop and characterize an in vitro psoriatic human skin equivalent (HSE) using human keratinocytes HaCat cell line grown on fibroblasts-derived matrices (FDM). The constructed HSEs were treated with cytokines (IL-1α, TNF-α, IL-6, and IL22) to allow controlled induction of psoriasis-associated features. Histological stainings showed that FDMHSE composed of a fully differentiated epidermis and fibroblast-populated dermis comparable to native skin and rat tail collagen-HSE. Hyperproliferation (CK16 and Ki67) and inflammatory markers (TNF-α and IL-6) expression were significantly enhanced in the cytokine-induced FDM- and rat tail collagen HSEs compared to non-treated HSE counterparts. The characteristics were in line with those observed in psoriasis punch biopsies. Treatment with all-trans retinoic acid (ATRA) has shown to suppress these effects, where HSE models treated with both ATRA and cytokines exhibit histological characteristics, hyperproliferation and differentiation markers expression like non-treated control HSEs. Cytokine-induced FDM-HSE, constructed entirely from human cell lines, provides an excellent opportunity for psoriasis research and testing new therapeutics.
    Matched MeSH terms: Cytokines/pharmacology*
  3. Binti Kamaruddin NA, Fong LY, Tan JJ, Abdullah MNH, Singh Cheema M, Bin Yakop F, et al.
    Molecules, 2020 May 29;25(11).
    PMID: 32485974 DOI: 10.3390/molecules25112534
    Endothelial cell injury caused by reactive oxygen species (ROS) plays a critical role in the pathogenesis of cardiovascular diseases. Omentin, an adipocytokine that is abundantly expressed in visceral fat tissue, has been reported to possess anti-inflammatory and antidiabetic properties. However, endothelial protective effects of omentin against oxidative stress remain unclear. This study aimed to evaluate the protective effect of omentin against hydrogen peroxide (H2O2)-induced cell injury in human umbilical vein endothelial cells (HUVECs). Cytotoxicity and cytoprotective effects of omentin were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic activity of HUVECs was detected using Annexin-V/PI and Hoechst 33258 staining methods. Antioxidant activity of omentin was evaluated by measuring both reactive oxygen species (ROS) levels and glutathione peroxidase (GPx) activity. No cytotoxicity effect was observed in HUVECs treated with omentin alone at concentrations of 150 to 450 ng/ml. MTT assay showed that omentin significantly prevented the cell death induced by H2O2 (p < 0.001). Hoechst staining and flow cytometry also revealed that omentin markedly prevented H2O2-induced apoptosis. Moreover, omentin not only significantly inhibited ROS production (p < 0.01) but also significantly (p < 0.01) increased GPx activity in HUVECs. In conclusion, our data suggest that omentin may protect HUVECs from injury induced by H2O2.
    Matched MeSH terms: Cytokines/pharmacology*
  4. Lim MN, Leong CF, Cheong SK, Seow HF
    Malays J Pathol, 2003 Dec;25(2):107-12.
    PMID: 16196366
    Dendritic cells (DC) are efficient and potent antigen-presenting cells. Pilot clinical trials indicated that DC loaded with tumour antigen could induce tumour-specific immune responses in various cancers including B-cell lymphoma, melanoma and prostate cancer. Owing to extensively low number of DC in the blood circulation, a variety of sources have been used to generate DC including monocytes, CD34+ stem cells and even with leukaemic blast cells. We demonstrate here a simple method to generate DC from acute myeloid leukaemia (AML) cells and monocytes from healthy donor or remission samples. AML cells or monocytes were cultured in RPMI 1640 media supplemented with foetal bovine serum or autologous serum where possible and different combinations of cytokines GM-CSF, IL-4 and TNF-alpha. The generated DC were evaluated for their morphology by phase contrast microscopy and May Grunwald Giemsa staining. Viability of cells was determined by trypan blue dye exclusion. Percentage of yields and immunophenotypes were carried out by flow cytometry. We found that cultured AML cells and monocytes developed morphological and immuno-phenotypic characteristics of DC. Monocytes are better than AML blast in generating DC and serve as a ready source for dendritic cell vaccine development.
    Matched MeSH terms: Cytokines/pharmacology
  5. Mohamad Buang ML, Seng HK, Chung LH, Saim AB, Idrus RB
    Arch Med Res, 2012 Jan;43(1):83-8.
    PMID: 22374243 DOI: 10.1016/j.arcmed.2012.01.012
    BACKGROUND AND AIMS: Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs).

    METHODS: Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test.

    RESULTS: Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium.

    CONCLUSIONS: These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future.

    Matched MeSH terms: Cytokines/pharmacology
  6. Sosroseno W, Bird PS, Seymour GJ
    Anaerobe, 2011 Oct;17(5):246-51.
    PMID: 21736946 DOI: 10.1016/j.anaerobe.2011.06.006
    Nitric oxide (NO) may play a crucial role in the pathogenesis of periodontal disease and, hence, the aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans surface-associated material (SAM) stimulates inducible nitric oxide synthase (iNOS) activity and NO production by the murine macrophage cell line RAW264.7. Cells were stimulated with untreated or heat-treated A. actinomycetemcomitans SAM and with or without pre-treatment with L-N(6)-(1-Iminoethyl)-lysine (L-NIL) (an iNOS inhibitor), polymyxin B, interferon-gamma (IFN-γ) and Interleukin-4 (IL-4), IL-10, genistein [a protein tyrosine kinase (PTK) inhibitor], bisindolylmaleimide [a protein kinase C (PKC) inhibitor], bromophenacyl bromide (BPB) [a phospholipase A(2) (PLA2) inhibitor] or wortmannin [phosphatidylinositol 3-kinase (PI-3K) inhibitor]. The iNOS activity and nitrite production in the cell cultures were determined. Untreated but not heat-treated A. actinomycetemcomitans SAM-stimulated both iNOS activity and nitrite production in RAW264.7 cells. L-NIL, IL-4, IL-10, genistein, bisindolylmaleimide, or BPB, suppressed but IFN-γ enhanced both iNOS activity and nitrite production by A. actinomycetemcomitans SAM-stimulated cells. Wortmannin and polymyxin B failed to alter both iNOS activity or nitrite production by A. actinomycetemcomitans SAM treated cells. Therefore, the present study suggests that a heat-sensitive protein constituent(s) of A. actinomycetemcomitans SAM stimulates both iNOS activity and nitrite production by RAW264.7 cells in a cytokine, PTK, PKC, and PLA(2) but not PI-3K-dependent fashion.
    Matched MeSH terms: Cytokines/pharmacology
  7. Sosroseno W, Musa M, Ravichandran M, Fikri Ibrahim M, Bird PS, Seymour GJ
    Oral Microbiol. Immunol., 2006 Jun;21(3):145-50.
    PMID: 16626370
    The aim of the present study was to determine whether or not lipopolysaccharide from Actinobacillus actinomycetemcomitans could stimulate arginase activity in a murine macrophage cell line (RAW264.7 cells).
    Matched MeSH terms: Cytokines/pharmacology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links