Displaying all 19 publications

Abstract:
Sort:
  1. Win TT, Aye SN, Lau Chui Fern J, Ong Fei C
    J Gastrointestin Liver Dis, 2020 Jun 03;29(2):191-198.
    PMID: 32530986 DOI: 10.15403/jgld-818
    BACKGROUND AND AIMS: The latest meta-analysis on the role of aspirin on various cancers was published in early 2018. By including the latest and updated primary observational studies, we aimed to conduct this systematic review and meta-analysis to synthesize stronger evidence on the role of aspirin in reducing gastric cancer (GC) risk.

    METHODS: The PubMed, Scopus, and MEDLINE databases were systematically searched up to December 2019 to identify relevant studies. Random-effects model was used to calculate summary ORs and 95%CI for I 2 >50%. If the heterogeneity is not significant, the fixed-effects model was used. Overall analysis of the studies, inverse variance weighting after transforming the estimates of each study into log OR and its standard error were used.

    RESULTS: 21 studies were included in this meta-analysis. Results showed that aspirin significantly reduced the GC risk (OR=0.64, 95%CI=0.54-0.76) with substantial heterogeneity (I 2 =96%). Effect of GC risk reduction in low dose (OR=0.80, 95%CI=0.59-1.09) is slightly greater than high dose aspirin (OR=1.08, 95%CI=0.77-1.52). Protective effect of aspirin uses >5 years (OR=0.67, 95%CI=0.34-1.31) was greater than <5 years (OR=1.01, 95%CI=0.72-1.43) Conclusion: In conclusion, this meta-analysis showed that low dose aspirin with longer duration of more than 5 years were associated with a statistically significant reduction in GC risk. However, due to possible confounding variables and bias, these results should be cautiously treated.

    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
  2. Al Fatease A, Alqahtani A, Khan BA, Mohamed JMM, Farhana SA
    Sci Rep, 2023 Dec 20;13(1):22730.
    PMID: 38123572 DOI: 10.1038/s41598-023-49328-2
    Fungal infections of skin including mycoses are one of the most common infections in skin or skins. Mycosis is caused by dermatophytes, non-dermatophyte moulds and yeasts. Various studies show different drugs to treat mycoses, yet there is need to treat it with applied drugs delivery. This study was designed to prepare a bio curcumin (CMN) nanoemulsion (CMN-NEs) for transdermal administration to treat mycoses. The self-nanoemulsification approach was used to prepare a nanoemulsion (NE), utilizing an oil phase consisting of Cremophor EL 100 (Cre EL), glyceryl monooleate (GMO), and polyethylene glycol 5000 (PEG 5000). Particle size (PS), polydispersity index (PDI), zeta potential (ZP), Fourier transform infrared (FTIR) spectrophotometric analysis, and morphological analyses were performed to evaluate the nanoemulsion (NE). The in vitro permeation of CMN was investigated using a modified vertical diffusion cell with an activated dialysis membrane bag. Among all the formulations, a stable, spontaneously produced nanoemulsion was determined with 250 mg of CMN loaded with 10 g of the oil phase. The average droplet size, ZP, and PDI of CMN-NEs were 90.0 ± 2.1 nm, - 7.4 ± 0.4, and 0.171 ± 0.03 mV, respectively. The release kinetics of CMN differed from zero order with a Higuchi release profile as a result of nanoemulsification, which also significantly increased the flux of CMN permeating from the hydrophilic matrix gel. Overall, the prepared nanoemulsion system not only increased the permeability of CMN but also protected it against chemical deterioration. Both CMN-ME (24.0 ± 0.31 mm) and CMN-NE gel (29.6 ± 0.25 mm) had zones of inhibition against Candida albicans that were significantly larger than those of marketed Itrostred gel (21.5 ± 0.34 mm). The prepared CMN-NE improved the bioavailability, better skin penetration, and the CMN-NE gel enhanced the release of CMN from the gel matrix on mycotic patients.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
  3. Ahmed S, Gul S, Idris F, Hussain A, Zia-Ul-Haq M, Jaafar HZ, et al.
    Molecules, 2014;19(8):11385-94.
    PMID: 25090125 DOI: 10.3390/molecules190811385
    Human plasma inhibits arachidonic acid metabolism and platelet aggregation. This helps human form a haemostatic control system that prevents the progress of certain aggregatory or inflammatory reactions. Whether this property of plasma is unique to human or extends to other species is not well known. It is speculated that this protective ability of plasma remains evolutionarily conserved in different mammals. In order to confirm this, the effect of plasma from 12 different mammalian species was investigated for its inhibitory potential against arachidonic acid metabolism and platelet aggregation. Metabolism of arachidonic acid by cyclooxygenase and lipoxygenase pathways was studies using radio-immuno assay and thin layer chromatography while platelet aggregation in the plasma of various mammals was monitored following turbedmetric method in a dual channel aggregometer. Results indicate that inhibition of AA metabolism and platelet aggregation is a common feature of plasma obtained from different mammalian species, although there exists large interspecies variation. This shows that besides human, other mammals also possess general protective mechanisms against various aggregatory and inflammatory conditions and this anti-inflammatory property of the plasma is evolutionarily conserved in mammalian species. The most likely candidates responsible for these properties of plasma include haptoglobin, albumin and lipoproteins.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
  4. Bukhari SN, Jantan I, Jasamai M
    Mini Rev Med Chem, 2013 Jan;13(1):87-94.
    PMID: 22876943
    Chalcones (1, 3-Diphenyl-2-propen-1-one) are constituted by a three carbon α, β-unsaturated carbonyl system. The biosynthesis of flavonoids and isoflavonoids is initiated by chalcones. Notable pharmacological activities of chalcones and its derivatives include anti-inflammatory, antifungal, antibacterial, antimalarial, antituberculosis, antitumor, antimicrobial and antiviral effects respectively. Owing to simplicity of the chemical structures and a huge variety of pharmacological actions exhibited, the entities derived from chalcones are subjected to extensive consideration. This review article is an effort to sum up the anti-inflammatory activities of chalcone derived chemical entities. Effect of chalcones on lipid peroxidation, heme oxygenase 1(HO-1), cyclooxygenase (COX), interleukin 5 (IL-5), nitric oxide (NO) and expression of cell adhesion molecules (CAM) is summarized stepwise.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology*
  5. bin Long I, Singh HJ, Rao GJ
    J. Pharmacol. Sci., 2005 Nov;99(3):272-6.
    PMID: 16293937
    The effects of indomethacin and nabumetone on urine and electrolyte excretion in conscious rats were examined. Male Sprague-Dawley rats were housed individually for a five-week duration, consisting of acclimatization, control, experimental, and recovery phases. During the experimental phase, rats were given either indomethacin (1.5 mg . kg(-1) body weight . day(-1) in 0.5 ml saline, n = 10), nabumetone (15 mg . kg(-1) body weight . day(-1) 0.5 ml saline, n = 10), or 0.5 ml saline alone (n = 10) for a period of two weeks. Water and food intake, body weight, urine output, and electrolyte excretions were estimated. Data were analyzed using two-way ANOVA. Urine output in the indomethacin- and nabumetone-treated groups was not different from the controls, but was significantly different between the drug-treated groups (P<0.01). Sodium, potassium, calcium, and magnesium excretions were not different between nabumetone-treated and control rats. However, sodium and potassium excretion was significantly lower in rats receiving indomethacin when compared to the control rats. Calcium and magnesium outputs, although did not differ from the controls, nevertheless decreased significantly with indomethacin (P<0.01). It appears that indomethacin and nabumetone when given at maximum human therapeutic doses may affect urine and electrolyte output in conscious rats.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology*
  6. Ahmad A, Ramasamy K, Jaafar SM, Majeed AB, Mani V
    Food Chem Toxicol, 2014 Mar;65:120-8.
    PMID: 24373829 DOI: 10.1016/j.fct.2013.12.025
    The present study was undertaken to compare the neuroprotective effects between total isoflavones from soybean and tempeh against scopolamine-induced cognitive dysfunction. Total isoflavones (10, 20 and 40mg/kg) from soybean (SI) and tempeh (TI) were administered orally to different groups of rats (n=6) for 15days. Piracetam (400mg/kg, p.o.) was used as a standard drug while scopolamine (1mg/kg, i.p.) was used to induce amnesia in the animals. Radial arm and elevated plus mazes served as exteroceptive behavioural models to measure memory. Brain cholinergic activities (acetylcholine and acetylcholinesterase) and neuroinflammatory activities (COX-1, COX-2, IL-1β and IL10) were also assessed. Treatment with SI and TI significantly reversed the scopolamine effect and improved memory with TI group at 40mg/kg, p.o. exhibiting the best improvement (p<0.001) in rats. The TI (10, 20 and 40mg/kg, p.o.) significantly increased (p<0.001) acetylcholine and reduced acetylcholinesterase levels. Meanwhile, only a high dose (40mg/kg, p.o.) of SI showed significant improvement (p<0.05) in the cholinergic activities. Neuroinflammation study also showed that TI (40mg/kg, p.o.) was able to reduce inflammation better than SI. The TI ameliorates scopolamine-induced memory in rats through the cholinergic neuronal pathway and by prevention of neuroinflammation.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
  7. Shipton FN, Khoo TJ, Hossan MS, Wiart C
    J Ethnopharmacol, 2017 Feb 23;198:91-97.
    PMID: 28049063 DOI: 10.1016/j.jep.2016.12.045
    ETHNOPHARMACOLOGICAL RELEVANCE: Pericampylus glaucus is a climbing plant found across Asia and used in traditional medicine to treat a number of conditions including splenomegaly, fever, cough, laryngitis, pulmonary disease, asthma, headache, hair loss, snake bite, boar bite, factures, boils, tumours, tetanus, rheumatic pain, itches and eclampsia.

    AIM OF THE STUDY: To test extracts of P. glaucus in a number of bioassays and determine the legitimacy of its traditional use.

    MATERIALS AND METHODS: The stems, leaves, roots and fruits of P. glaucus were collected and extracted sequentially with hexane, chloroform and ethanol, respectively. The anti-inflammatory activity was assessed by testing the ability of the extracts to inhibit heat induced protein denaturation, stabilise human red blood cells under hypotonic stress and by testing the inhibitory activity of the extracts against cyclooxygenases 1 and 2. Cytotoxicity was tested using the human lung epithelial cell line MRC-5 and nasopharangeal carcinoma cell line HK1 in the MTT assay.

    RESULTS: Many of the samples showed an ability to prevent heat induced protein denaturation, as well as prevent lysis of red blood cells. Most of the extracts demonstrated inhibitory activity towards both of the COX enzymes. The ethanol extracts tended to demonstrate greater toxicity than other extracts, with some of the other extracts significantly enhancing growth and metabolism of the cells.

    CONCLUSION: The benefit of P. glaucus for the treatment of diseases related to inflammation and cancer was supported by the in vitro assays adopted in this study.

    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
  8. Shaha MKK, Sirata HM, Jamil S, Jalil J
    Nat Prod Commun, 2016 Sep;11(9):1275-1278.
    PMID: 30807020
    A new pyranoflavone, methoxycyclocommunol (1) together with four known flavonoids, artonin F (2), heteroflavanone A (3), cudraflavone C (4) and cyclocommunol (5) were isolated from the bark of Artocarpus integer var. silvestris Corner. Their structures were elucidated through extensive spectroscopic- techniques (UV, IR, MS, 1D-NMR and 2D-NMR) and by comparison with literature data. All the pure compounds were tested for their anti-inflammatory activities by using screening kit and radioimmunoassay methods. In a 15-lipoxygenase (15-LOX) inhibitory assay, compounds 1, 2, 4 and 5 gave weak percentages of inhibition, 16.5, 18.3, 17.6, 10.2%, respectively at the concentration of 100 μM. Compounds 1, 3 and 4, however, showed strong dose- dependent inhibition towards prostaglandin E₂ (PGE₂) production in lipopolysaccharide-induced human whole blood using a radioimmunoassay method with IC₅₀ values of 4.3, 0.8, and 0.07 μM, respectively suggesting that they strongly exhibited cyclooxygenase-2 (COX-2) activity.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology*
  9. Bukhari SN, Zhang X, Jantan I, Zhu HL, Amjad MW, Masand VH
    Chem Biol Drug Des, 2015 Jun;85(6):729-42.
    PMID: 25328063 DOI: 10.1111/cbdd.12457
    A novel series of 1,3-diphenyl-2-propen-1-one (chalcone) derivatives was synthesized by a simple, eco-friendly, and efficient Claisen-Schmidt condensation reaction and used as precursors for the synthesis of new pyrazoline derivatives. All the synthesized compounds were screened for anti-inflammatory related activities such as inhibition of phospholipase A(2) (PLA(2)), cyclooxygenases (COX-1 and COX-2), IL-6, and TNF-α. The results of the above studies show that the compounds synthesized are effective inhibitors of above pro-inflammatory enzymes and cytokines. Overall, the results of the studies reveal that the pyrazolines with chlorophenyl substitution (1b-6b) seem to be important for inhibition of enzymes and cytokines. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX-inhibitory activities of the investigated compounds.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
  10. Yehye WA, Abdul Rahman N, Alhadi AA, Khaledi H, Weng NS, Ariffin A
    Molecules, 2012 Jun 25;17(7):7645-65.
    PMID: 22732881 DOI: 10.3390/molecules17077645
    A computer-aided predictions of antioxidant activities were performed with the Prediction Activity Spectra of Substances (PASS) program. Antioxidant activity of compounds 1, 3, 4 and 5 were studied using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and lipid peroxidation assays to verify the predictions obtained by the PASS program. Compounds 3 and 5 showed more inhibition of DPPH stable free radical at 10⁻⁴ M than the well-known standard antioxidant, butylated hydroxytoluene (BHT). Compound 5 exhibited promising in vitro inhibition of Fe²⁺-induced lipid peroxidation of the essential egg yolk as a lipid-rich medium (83.99%, IC₅₀ 16.07 ± 3.51 μM/mL) compared to α-tocopherol (α-TOH, 84.6%, IC₅₀ 5.6 ± 1.09 μM/mL). The parameters for drug-likeness of these BHT analogues were also evaluated according to the Lipinski’s “rule-of-five” (RO5). All the BHT analogues were found to violate one of the Lipinski’s parameters (LogP > 5), even though they have been found to be soluble in protic solvents. The predictive polar surface area (PSA) and absorption percent (% ABS) data allow us to conclude that they could have a good capacity for penetrating cell membranes. Therefore, one can propose these new multipotent antioxidants (MPAOs) as potential antioxidants for tackling oxidative stress and lipid peroxidation processes.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
  11. Bukhari SN, Lauro G, Jantan I, Bifulco G, Amjad MW
    Bioorg Med Chem, 2014 Aug 1;22(15):4151-61.
    PMID: 24938495 DOI: 10.1016/j.bmc.2014.05.052
    Arachidonic acid and its metabolites have generated high level of interest among researchers due to their vital role in inflammation. The inhibition of enzymes involved in arachidonic acid metabolism has been considered as synergistic anti-inflammatory effect. A series of novel α,β-unsaturated carbonyl based compounds were synthesized and evaluated for their inhibitory activity on secretory phospholipase A₂ (sPLA₂), cyclooxygenases (COX), soybean lipoxygenase (LOX) in addition to proinflammatory cytokines comprising IL-6 and TNF-α. Six α,β-unsaturated carbonyl based compounds (2, 3, 4, 12, 13 and 14) exhibited strong inhibition of sPLA₂ activity, with IC₅₀ values in the range of 2.19-8.76 μM. Nine compounds 1-4 and 10-14 displayed inhibition of COX-1 with IC₅₀ values ranging from 0.37 to 1.77 μM (lower than that of reference compound), whereas compounds 2, 10, 13 and 14 strongly inhibited the COX-2. The compounds 10-14 exhibited strong inhibitory activity against LOX enzyme. All compounds were evaluated for the inhibitory activities against LPS-induced TNF-α and IL-6 release in the macrophages. On the basis of screening results, five active compounds 3, 4, 12, 13 and 14 were found strong inhibitors of TNF-α and IL-6 release in a dose-dependent manner. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX and LOX inhibitory activities of the investigated compounds. Present findings increases the possibility that these α,β-unsaturated carbonyl based compounds might serve as beneficial starting point for the design and development of improved anti-inflammatory agents.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
  12. Jantan I, Bukhari SN, Adekoya OA, Sylte I
    Drug Des Devel Ther, 2014;8:1405-18.
    PMID: 25258510 DOI: 10.2147/DDDT.S67370
    Arachidonic acid metabolism leads to the generation of key lipid mediators which play a fundamental role during inflammation. The inhibition of enzymes involved in arachidonic acid metabolism has been considered as a synergistic anti-inflammatory effect with enhanced spectrum of activity. A series of 1,3-diphenyl-2-propen-1-one derivatives were investigated for anti-inflammatory related activities involving inhibition of secretory phospholipase A2, cyclooxygenases, soybean lipoxygenase, and lipopolysaccharides-induced secretion of interleukin-6 and tumor necrosis factor-alpha in mouse RAW264.7 macrophages. The results from the above mentioned assays exhibited that the synthesized compounds were effective inhibitors of pro-inflammatory enzymes and cytokines. The results also revealed that the chalcone derivatives with 4-methlyamino ethanol substitution seem to be significant for inhibition of enzymes and cytokines. Molecular docking experiments were carried out to elucidate the molecular aspects of the observed inhibitory activities of the investigated compounds. Present findings increase the possibility that these chalcone derivatives might serve as a beneficial starting point for the design and development of improved anti-inflammatory agents.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology*
  13. Hamsin DE, Hamid RA, Yazan LS, Taib CN, Yeong LT
    PMID: 24641961 DOI: 10.1186/1472-6882-14-102
    In our previous studies conducted on Ardisia crispa roots, it was shown that Ardisia crispa root inhibited inflammation-induced angiogenesis in vivo. The present study was conducted to identify whether the anti-angiogenic properties of Ardisia crispa roots was partly due to either cyclooxygenase (COX) or/and lipoxygenase (LOX) activity inhibition in separate in vitro studies.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
  14. Saadawi S, Jalil J, Jasamai M, Jantan I
    Molecules, 2012;17(5):4824-35.
    PMID: 22538486 DOI: 10.3390/molecules17054824
    Acetylmelodorinol, chrysin and polycarpol, together with benzoic acid, benzoquinone and stigmasterol were isolated from the leaves of Mitrella kentii (Bl.) Miq. The compounds were evaluated for their ability to inhibit prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) production in human whole blood using a radioimmunoassay technique. Their inhibitory effect on platelet activating factor (PAF) receptor binding to rabbit platelet was determined using ³H-PAF as a ligand. Among the compounds tested, chrysin showed a strong dose-dependent inhibitory activity on PGE(2) production (IC₅₀ value of 25.5 µM), which might be due to direct inhibition of cyclooxygenase-2 (COX-2) enzymatic activity. Polycarpol, acetylmelodorinol and stigmasterol exhibited significant and concentration-dependent inhibitory effects on TXB₂ production with IC₅₀ values of 15.6, 19.1 and 19.4 µM, respectively, suggesting that they strongly inhibited COX-1 activity. Polycarpol and acetylmelodorinol showed strong dose-dependent inhibitory effects on PAF receptor binding with IC₅₀ values of 24.3 and 24.5 µM, respectively.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology*
  15. Abdelwahab SI, Hassan LE, Sirat HM, Yagi SM, Koko WS, Mohan S, et al.
    Fitoterapia, 2011 Dec;82(8):1190-7.
    PMID: 21871542 DOI: 10.1016/j.fitote.2011.08.002
    The in vivo and in vitro mechanistic anti-inflammatory actions of cucurbitacin E (CE) (Citrullus lanatus var. citroides) were examined. The results showed that LPS/INF-γ increased NO production in RAW264.7 macrophages, whereas L-NAME and CE curtailed it. CE did not reveal any cytotoxicity on RAW264.7 and WRL-68 cells. CE inhibited both COX enzymes with more selectivity toward COX-2. Intraperitoneal injection of CE significantly suppressed carrageenan-induced rat's paw edema. ORAC and FRAP assays showed that CE is not a potent ROS scavenger. It could be concluded that CE is potentially useful in treating inflammation through the inhibition of COX and RNS but not ROS.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
  16. Ibrahim Abdelwahab S, Syaed Koko W, Mohamed Elhassan Taha M, Mohan S, Achoui M, Ameen Abdulla M, et al.
    Eur J Pharmacol, 2012 Mar 5;678(1-3):61-70.
    PMID: 22227329 DOI: 10.1016/j.ejphar.2011.12.024
    Columbin, a diterpenoid furanolactone, was isolated purely for the first time from the plant species Tinspora bakis. The anti-inflammatory effects of columbin were studied in vitro, in silico and in vivo. The effect of columbin on nitric oxide was examined on lipopolysaccharide-interferon-gamma (LPS/IFN) induced RAW264.7 macrophages. In vitro and in silico cyclooxygenase-1 and cyclooxygenase-2 inhibitory activities of columbin using biochemical kit and molecular docking, respectively, were investigated. Mechanism of columbin in suppressing NF-kappaB-translocation was tested using Cellomics®NF-κB activation assay and ArrayScan Reader in LPS-stimulated RAW264.7 cells. Moreover, effects of columbin in vivo that were done on carrageenan-induced mice paw-oedema were tested. Lastly, the in vitro and in vivo toxicities of columbin were examined on human liver cells and mice, respectively. Treatment with columbin or N(ω)-nitro-l-arginine methyl ester (l-NAME) inhibited LPS/IFN-γ-induced NO production without affecting the viability of RAW264.7. Pre-treatment of stimulated cells with columbin did not inhibit the translocation of NF-κB to the nucleus in LPS-stimulated cells. COX-1 and COX-2 inhibitory activities of columbin were 63.7±6.4% and 18.8±1.5% inhibition at 100μM, respectively. Molecular docking study further helped in supporting the observed COX-2 selectivity. Whereby, the interaction of columbin with Tyr385 and Arg120 signifies its higher activity in COX-2, as Tyr385 was reported to be involved in the abstraction of hydrogen from C-13 of arachidonate, and Arg120 is critical for high affinity arachidonate binding. Additionally, columbin inhibited oedema formation in mice paw. Lastly, the compound was observed to be safe in vitro and in vivo. This study presents columbin as a potential anti-inflammatory drug.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology*
  17. Ajay M, Gilani AU, Mustafa MR
    Life Sci, 2003 Dec 19;74(5):603-12.
    PMID: 14623031
    The potency, structure-activity relationship, and mechanism of vasorelaxation of a series of flavonoids, representing different subclasses (flavonols: fisetin, rutin, quercetin; flavones: chrysin, flavone, baicalein; flavanones: naringenin, naringin; isoflavones: diadzein and flavanes: epigallo catechin gallate), were examined in the isolated rat aorta. Most of the flavonoids tested showed concentration dependent relaxant effects against K+ (80 mM) and phenylephrine (PE, 0.1 microM)-induced contractions with a greater inhibition of the responses to the alpha1-adrenoceptor agonist. The relaxant effects of most of the flavonoids involve in part the release of nitric oxide and prostaglandins from the endothelium as pretreatment with L-NAME and indomethacin attenuated the responses. In addition, the relaxant action of the flavonoids includes inhibition of Ca+2 influx and release of Ca+2 from intracellular stores. A structure-activity relationship amongst the flavonoids was suggested.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
  18. Abdelgawad MA, Bakr RB, Ahmad W, Al-Sanea MM, Elshemy HAH
    Bioorg Chem, 2019 11;92:103218.
    PMID: 31536956 DOI: 10.1016/j.bioorg.2019.103218
    To enhance the cytotoxicity of benzimidazole and/or benzoxazole core, the benzimidazole/benzoxazole azo-pyrimidine were synthesized through diazo-coupling of 3-aminophenybenzimidazole (6a) or 3-aminophenylbenzoxazole (6b) with diethyl malonate. The new azo-molanates 6a&b mixed with urea in sodium ethoxide to afford the benzimidazolo/benzoxazolopyrimidine 7a&b. The structure elucidation of new synthesized targets was proved using spectroscopic techniques NMR, IR and elemental analysis. The cytoxicity screening had been carried out against five cancer cell lines: prostate cancer (PC-3), lung cancer (A-549), breast cancer (MCF-7), pancreas cancer (PaCa-2) and colon cancer (HT-29). Furthermore, the antioxidant activity, phospholipase A2-V and cyclooxygenases inhibitory activities of the target compounds 7a&b were evaluated and the new compounds showed potent activity (cytotoxicity IC50 range from 4.3 to 9.2 µm, antioxidant activity from 40% to 80%, COXs or LOX inhibitory activity from 1.92 µM to 8.21 µM). The docking of 7a&b was made to confirm the mechanism of action.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology*
  19. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Cyclooxygenase Inhibitors/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links