The bioavailability of beta- and gamma-cyclodextrin artemisinin complexes was evaluated in comparison with a normal commercially available preparation, Artemisinin 250. Twelve healthy male volunteers participated in the study conducted according to a three-way crossover design. The bioavailability was compared using the parameters, total area under the plasma level-time curve (AUC(0-infinity)), peak plasma concentration (C(max)), and time to reach peak plasma concentration (T(max)). A statistically significant difference was observed between the values of the complexes and Artemisinin 250 for the three parameters. However, no statistically significant difference was observed between the values of the beta- and gamma-cyclodextrin complexes. Moreover, the 90% confidence interval for the ratio of the AUC(0-infinity) values of the beta-cyclodextrin complex over those of Artemisinin 250 was estimated to be between 1.51-2.04, while that of C(max) was between 1.73-2.93. For the gamma-cyclodextrin complex, the respective intervals were 1.30-1.76 and 1.43-2.43. These findings indicated that the beta- and gamma-cyclodextrin complexes had a much higher rate and extent of bioavailability compared to Artemisinin 250. In addition, the absorption of artemisinin was observed to be poor and negligible when the preparations started to arrive in the colon. This could be attributed to poor dissolution of artemisinin in the semi-solid faecal matter in the lower part of the gastrointestinal tract.
Galectin-3 (Gal-3) is a carbohydrate-binding protein, that promotes angiogenesis through mediating angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). There is strong evidence confirming FGF involvement in tumor growth and progression by disrupting cell proliferation and angiogenesis. In this study, we investigated the effect of β-cyclodextrin:everolimus:FGF-7 inclusion complex (Complex) on Caco-2 cell migration, cell motility and colony formation. In addition, we examined the inhibitory effect of the Complex on the circulating proteins; Gal-3 and FGF-7. Swiss Target Prediction concluded that Gal-3 and FGF are possible targets for β-CD. Results of the chemotaxis cell migration assay on Caco-2 cell line revealed that the Complex has higher reduction in cell migration (78.3%) compared to everolimus (EV) alone (58.4%) which is possibly due to the synergistic effect of these molecules when used as a combined treatment. Moreover, the Complex significantly decreased the cell motility in cell scratch assay, less than 10% recovery compared to the control which has ~ 45% recovery. The Complex inhibited colony formation by ~ 75% compared to the control. Moreover, the Complex has the ability to inhibit Gal-3 with minimum inhibitory concentration of 33.46 and 41 for β-CD and EV, respectively. Additionally, β-CD and β-CD:EV were able to bind to FGF-7 and decreased the level of FGF-7 more than 80% in cell supernatant. This confirms Swiss Target Prediction result that predicted β-CD could target FGF. These findings advance the understanding of the biological effects of the Complex which reduced cell migration, cell motility and colony formation and it is possibly due to inhibiting circulating proteins such as; Gal-3 and FGF-7.
To overcome the poor water solubility of curcumin, a curcumin-β-cyclodextrin (Cur-β-CD) complex was prepared as a novel photosensitizer. Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to verify the formation of Cur-β-CD. Furthermore, the ROS generation capacity and photodynamic bactericidal effect were measured to confirm this Cur-β-CD complex kept photodynamic activity of curcumin. The result showed Cur-β-CD could effectively generate ROS upon blue-light irradiation. The plate count assay demonstrated Cur-β-CD complex possess desirable photodynamic antibacterial effect against food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Escherichia coli. The cell morphology determined by scanning electron microscope (SEM) and transmission electron microscope (TEM) showed Cur-β-CD could cause cell deformation, surface collapse and cell structure damage of the bacteria, resulting in the leakage of cytoplasmic; while agarose gel electrophoresis and SDS-PAGE further illustrated the inactivation mechanisms by Cur-β-CD involve bacterial DNA damage and protein degradation.
Litramine (IQP-G-002AS) was shown to be effective and safe for weight loss in overweight and obese subjects. However, long-term effectiveness on maintenance of body weight loss has yet to be ascertained.