The aim of this review is to highlight and provide an update on the current development of pesticide remediation methods, focusing on the utilization of different cyclodextrin (CD) molecules. Because of less environmental impact and non-toxic nature, CDs are beneficial for pesticide remediation, reducing environmental risk and health hazards. They are advantageous for the removal of pesticides from contaminated areas, as well as for better pesticide formulation and, posing significant effects on the hydrolysis or degradation of pesticides. The review focuses on the current trend and innovations regarding the methods and strategies employed for using CDs in designing pesticide remediation. Nowadays, in addition to the conventional experimental techniques, molecular simulation approaches are significantly contributing to the study of such phenomena and hence are recognized as a widely used tool.
The present study was conducted to investigate the inclusion complexation of artemisinin (ART) with natural cyclodextrins (CyD), namely alpha-, beta-, and gamma-CyDs with the aim of improving its solubility and dissolution rate. Complex formation in aqueous solution and solid state was studied by solubility analysis, dissolution, and thermal analysis. Solubility diagrams indicated that the complexation of ART and the three CyDs occurred at a molar ratio of 1:1, and showed a remarkable increase in ART solubility. Moreover, the thermodynamic parameters calculated by using the van't Hoff equation revealed that the complexation process was associated with negative enthalpy of formation and occurred spontaneously. The complexation capability of CyDs with ART increased in the order of alpha- < gamma- < beta-CyDs and could be ascribed to the structural compatibility between the molecular size of ART and the diameter of the CyD cavities. Dissolution profiles of the three complexes demonstrated an increased rate and extent of dissolution compared with those of their respective physical mixtures and a commercial preparation. In solid-state analysis, using differential scanning calorimetry, the gamma-CyD was capable of complexing the highest percentage of ART, followed by beta- and alpha-CyDs. The respective estimated percentage of ART complexed by the CyDs were 85%, 40%, and 12%.
Carvedilol, a β-blocker prescribed for chronic heart failure, suffers from poor bioavailability and rapid first pass metabolism when administered orally. Herein, we present the development of tip microarray patches (MAPs) composed of ternary cyclodextrin (CD) complexes of carvedilol for transdermal delivery. The ternary complex with hydroxypropyl γ-cyclodextrin (HPγCD) and poly(vinyl pyrrolidone) (PVP) reduced the crystallinity of carvedilol, as evidenced by DSC, XRD, NMR, and SEM analysis. MAPs were fabricated using a two-step process with the ternary complex as the needle layer. The resulting MAPs were capable of breaching ex vivo neonatal porcine skin to a depth ≈600 μm with minimal impact to needle height. Upon insertion, the needle dissolved within 2 h, leading to the transdermal delivery of carvedilol. The MAPs displayed minimal toxicity and acceptable biocompatibility in cell assays. In rats, MAPs achieved significantly higher AUC levels of carvedilol than oral administration, with a delayed Tmax and sustained plasma levels over several days. These findings suggest that the carvedilol-loaded dissolving MAPs have the potential to revolutionise the treatment of chronic heart failure.
An extractive bioconversion with Bacillus cereus cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) in aqueous two-phase system (ATPS) was investigated for the synthesis and recovery of cyclodextrins (CDs). Optimum condition for the extractive bioconversion of CDs was achieved in ATPS consisted of 7.7% (w/w) polyethylene glycol (PEG) 20,000 and 10.3% (w/w) dextran T500 with volume ratio (VR) of 4.0. Enzymatic conversion of starch occurred mainly in dextran-rich bottom phase whereas the product, CDs was transferred to top phase and a higher partition coefficient of CDs was achieved. Repetitive batch of CDs synthesis was employed by replenishment of the top phase components and addition of starch every 8h. An average total CDs concentration of 13.7 mg/mL, (4.77 mg/mLα-CD, 5.02 mg/mLβ-CD and 3.91 mg/mLγ-CD) was recovered in the top phase of PEG 20,000/dextran T500 ATPS. This study showed the effectiveness of ATPS application in extractive bioconversion of CDs synthesis with B. cereus CGTase.
The objective of the present investigation was to study the effect of β-cyclodextrin (β-CD) on the in vitro dissolution of aceclofenac (AF) from molecular inclusion complexes. Aceclofenac molecular inclusion complexes in 1:1 and 1:2 M ratio were prepared using a kneading method. The in vitro dissolution of pure drug, physical mixtures, and cyclodextrin inclusion complexes was carried out. Molecular inclusion complexes of AF with β-CD showed a considerable increase in the dissolution rate in comparison with the physical mixture and pure drug in 0.1 N HCl, pH 1.2, and phosphate buffer, pH 7.4. Inclusion complexes with a 1:2 M ratio showed the maximum dissolution rate in comparison to other ratios. Fourier transform infrared spectroscopy and differential scanning calorimetry studies indicated no interaction between AF and β-CD in complexes in solid state. Molecular modeling results indicated the relative energetic stability of the β-CD dimer-AF complex as compared to β-CD monomer-AF. Dissolution enhancement was attributed to the formation of water soluble inclusion complexes with β-CD. The in vitro release from all the formulations was best described by first-order kinetics (R(2) = 0.9826 and 0.9938 in 0.1 N HCl and phosphate buffer, respectively) followed by the Higuchi release model (R(2) = 0.9542 and 0.9686 in 0.1 N HCl and phosphate buffer, respectively). In conclusion, the dissolution of AF can be enhanced by the use of a hydrophilic carrier like β-CD.
The aim of this study was to develop a novel controlled ionic gelation strategy for chitosan nanoparticle preparation to avoid particle aggregation tendency associated with conventional ionic gelation process. In this study inclusion complexation behaviour of sodium tripolyphosphate (TPP) with beta cyclodextrin (β-CD) has been investigated. The TPP-β-CD inclusion complex was characterized by FT-IR, XRD and DSC techniques. The complexation behaviour was also investigated by molecular docking study. The results showed that the TPP molecule formed inclusion complex with β-CD. Further, TPP-β-CD inclusion complex was used to prepare chitosan nanoparticles. The chitosan nanoparticles based on TPP-β-CD inclusion complex had smaller size of 104.2nm±0.608, good PDI value of 0.346±0.016 and acceptable zeta potential of +27.33mV±0.416. The surface characteristics of chitosan nanoparticles were also observed with transmission electron microscopy. Results indicates that TPP-β-CD inclusion complex can be used for the formation of chitosan nanoparticles with smaller and more uniform particle size in comparison to conventional TPP based chitosan nanoparticles.
The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD) polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI) and toluene-2,6-diisocyanate (TDI), with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were subsequently used for further studies. The adsorption capacity of β-CD-HMDI is 0.0305, 0.0376, 0.1854 and 0.3026 mmol/g for methyl-, ethyl-, propyl-, and benzyl-paraben, respectively. β-CD-TDI have higher adsorption capacities compared with β-CD-HMDI, the adsorption capacity are 0.1019, 0.1286, 0.2551, and 0.3699 mmol/g methyl-, ethyl-, propyl-, and benzyl-paraben respectively. The parameters studied were adsorption capacity, water retention, and reusability. Role of both cross-linker in adsorption, hydrophobicity of polymers, and adsorption capacity of different parabens were compared and discussed. All experiments were conducted in batch adsorption technique. These polymers were applied to real samples and showed positive results.
The supramolecular structure of the inclusion complex of β-cyclodextrin (β-CD) with 1,1',2,2'-tetramethyl-3,3'-(p-phenylenedimethylene) diimidazolium dibromide (TetraPhimBr), a dicationic ionic liquid, has been investigated. The inclusion complex with 1:1 molar ratio was prepared by a kneading method. Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD) analysis, (1)H NMR and thermogravimetric analysis (TGA) confirmed the formation of the inclusion complex. The results showed that the host-guest system is a fine crystalline powder. The decomposition temperature of the inclusion complex is lower than that of its parent molecules, TetraPhimBr and β-CD individually.
A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method with hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) as chiral selector for the enantiomeric separation of econazole is reported. Enantioseparation of econazole was successfully achieved by the optimized CD-MEKC system containing 40mM HP-gamma-CD, 50mM SDS and 20mM phosphate buffer (pH 8) solution with an analysis time of less than 9min. Calibration curves were linear for the two stereoisomers of econazole (r(2)>0.998). Good repeatabilities in the migration time, peak area and peak height were obtained in terms of RSD% ranging from 0.30 to 7.67%. Combination of solid-phase extraction (SPE) procedure using diol column and the CD-MEKC method was successfully applied to the determination of econazole in a formulated cream sample.
β-Cyclodextrin-ionic liquid polymer (CD-ILP) was first synthesized by functionalized β-cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using a toluene diisocyanate (TDI) linker to form insoluble CD-ILP (βCD-BIMOTs-TDI). The βCD-BIMOTs-TDI polymer was characterized using various tools and the results obtained were compared with those derived from the native β-cyclodextrin polymer (βCD-TDI). The SEM result shows that the presence of ionic liquid (IL) increases the pore size, while the thermo gravimetric analysis (TGA) result shows that the presence of IL increases the stability of the polymer. Meanwhile, Brunauer-Emmett-Teller (BET) results show that βCD-BIMOTs-TDI polymer has 1.254 m(2)/g surface areas and the Barret-Joyner-Halenda (BJH) pore size distribution result reveals that the polymer exhibits macropores with a pore size of 77.66 nm. Preliminary sorption experiments were carried out and the βCD-BIMOTs-TDI polymer shows enhanced sorption capacity and high removal towards phenols and As(V).
Supramolecular hydrogels, formed by noncovalent crosslinking of polymeric chains in water, constitute an interesting class of materials that can be developed specifically for drug delivery and biomedical applications. The biocompatibility, stimuli responsiveness to various external factors, and powerful functionalization capacity of these polymeric networks make them attractive candidates for novel advanced dosage form design.
The effect of hydroxypropyl methylcellulose (HPMC) concentration on β-cyclodextrin (β-CD) solubilization of norfloxacin was examined. The solubility and dissolution of norfloxacin/β-CD and norfloxacin/β-CD/HPMC inclusion complexes were studied. The presence of β-CD increased significantly the solubility and dissolution of norfloxacin. The addition of HPMC until 5% (w/w) improved the solubilization of norfloxacin but further addition above 5% (w/w), decreased norfloxacin solubilization. Fourier transformed Infra-red (FTIR) showed that norfloxacin was successfully included into β-CD. Differential scanning calorimetry (DSC) showed that the norfloxacin endothermic peak shifted to a lower temperature with reduced intensity indicating the formation of inclusion complex. The addition of HPMC reduced further the intensity of norfloxacin endothermic peak. Most of the sharp and intense peaks of norfloxacin disappeared with the addition of HPMC. In conclusion, the concentration of hydrophilic polymer used to enhance β-CD solubilization of poorly soluble drugs is very critical.
Cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method was developed for simultaneous enantioseparation of three imidazole drugs namely tioconazole, isoconazole and fenticonazole. Three easily available and inexpensive cyclodextrins namely 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) were evaluated to discriminate the six stereoisomers of the drugs. However, none of the three CDs gave a complete enantioseparation of the drugs. Effective enantioseparation of tioconazole, isoconazole and fenticonazole was achieved using a combination of 35 mM HP-γ-CD and 10 mM DM-β-CD as chiral selectors. The best separation using both HP-γ-CD and DM-β-CD (35 mM:10 mM) as chiral selectors were accomplished in background electrolyte (BGE) containing 35 mM phosphate buffer (pH 7.0), 50 mM sodium dodecyl sulfate (SDS) and 15% (v/v) acetonitrile at 27 kV and 30 °C with all peaks resolved in less than 15 min with resolutions, Rs 1.90-27.22 and peak efficiencies, N > 180 000. The developed method was linear over the concentration range of 25-200 mg l(-1) (r(2) > 0.998) and the detection limits (S/N = 3) of the three imidazole drugs were found to be 2.7-7.7 mg l(-1). The CD-MEKC method was successfully applied to the determination of the three imidazole drugs in spiked human urine sample and commercial cream formulation of tioconazole and isoconazole with good recovery (93.6-106.2%) and good RSDs ranging from 2.30-6.8%.
Binding constants for the enantiomers of modafinil with the negatively charged chiral selector sulfated-β-CD (S-β-CD) using CE technique is presented. The calculations of the binding constants employing three different linearization plots (double reciprocal, X-reciprocal and Y-reciprocal) were performed from the electrophoretic mobility values of modafinil enantiomers at different concentrations of S-β-CD in the BGE. The highest inclusion affinity of the modafinil enantiomers were observed for the S-enantiomer-S-β-CD complex, in agreement with the computational calculations performed previously. Binding constants for each enantiomer-S-β-CD complex at different temperatures, as well as thermodynamic parameters for binding, were calculated. Host-guest binding constants using the double reciprocal fit showed better linearity (r(2)>0.99) at all temperatures studied (15-30°C) and compared with the other two fit methods. The linear van't Hoff (15-30°C) plot obtained indicated that the thermodynamic parameters of complexation were temperature dependent for the enantiomers.
An efficient method for the simultaneous enantioseparation of cyproconazole, bromuconazole, and diniconazole enantiomers was developed by CD-modified MEKC using a dual mixture of neutral CDs as chiral selector. Three neutral CDs namely hydroxypropyl-beta-CD, hydroxypropyl-gamma-CD, and gamma-CD were tested as chiral selectors at different concentrations ranging from 10, 20, 30 and 40 mM, but enantiomers of the studied fungicides were not completely separated. The best dual chiral recognition mode for the simultaneous separation of cyproconazole, bromuconazole, and diniconazole enantiomers was achieved with a mixture of 27 mM hydroxypropyl-beta-CD and 3 mM hydroxypropyl-gamma-CD in 25 mM phosphate buffer (pH 3.0) containing 40 mM SDS to which methanol-acetonitrile (10%:5% v/v) was added as organic modifiers. The best separation was based on the appearance of 10 peaks simultaneously, with good resolution (R(s) 1.1-15.9), and peak efficiency (N>200,000). Good repeatabilities in the migration time, peak area, and peak height were obtained in terms of RSD ranging from (0.72 to 1.06)%, (0.39 to 3.49)%, and (1.90 to 4.84)%, respectively.
Results from the present study have shown that the ionic species of buffers, pH values and reaction temperature can affect the enzyme unit activities and product specificity of Toruzyme (Novo Nordisk A/S Bagsvaerd, Denmark) CGTase (cyclodextrin glucanotransferase). Applying a similar reaction environment (acetate buffer, pH 6.0; temperature, 60 degrees C), the CGTase was found to be capable of producing pre dominantly beta-cyclodextrin from either raw or gelatinized sago (Cycas revoluta) starch. Changing the buffer from acetate to phosphate reduced the yield of beta-cyclodextrin from 2.48 to 1.42 mg/ml and also affected the product specificity, where production of both alpha- and beta-cyclodextrins were more pronounced. The decrease in the production of cyclodextrins in phosphate buffer was significant at both pH 6.0 and 7.0. However, changing the buffer to Tris/HCl (pH 7.0) showed a significant increase in beta-cyclodextrin production. Increasing the ionic strength of sodium acetate and Tris/HCl buffers at pH 6.0 and 7.0 to equivalent ionic strength of phosphate buffers showed no significant effects on cyclodextrin production. Higher yield of cyclodextrins at pH 7.0 when Tris/HCl was used might be due to the binding of chloride ions at the calcium-binding sites of the CGTase, resulting in the shift of the optimum pH close to physiological environment, leading to an increase in the activities and specificity.
This present study investigated the effect of Captisol, a chemically modified cyclodextrin, on the in vitro dissolution of glimepiride. We prepared glimepiride-Captisol complexes of different mass ratios (1:1, 1:2, and 1:3 w/w) by a physical mixing or freeze-drying technique, and found that complexation with Captisol enhanced the water solubility of glimepiride. Molecular docking and dynamic simulation predicted complex formation; at the same time, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffractometry, and scanning electron microscope indicated molecular interactions that support complexation. We also found that an inclusion complex was better than a physical mixture in enhancing the complexation of glimepiride with Captisol and enhancing water solubility. Phase solubility study of the glimepiride-Captisol complex showed an AL-type profile, implying the formation of a 1:1 inclusion complex. The study also revealed that pH influenced the stability of the complex because the stability constant of the glimepiride-Captisol complex was higher in distilled water of pH ∼6.0 than in phosphate buffer of pH 7.2.
In this work, we reported the synthesis, characterization and adsorption study of two β-cyclodextrin (βCD) cross-linked polymers using aromatic linker 2,4-toluene diisocyanate (2,4-TDI) and aliphatic linker 1,6-hexamethylene diisocyanate (1,6-HDI) to form insoluble βCD-TDI and βCD-HDI. The adsorption of 2,4-dinitrophenol (DNP) on both polymers as an adsorbent was studied in batch adsorption experiments. Both polymers were well characterized using various tools that include Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller analysis and scanning electron microscopy, and the results obtained were compared with the native βCD. The adsorption isotherm of 2,4-DNP onto polymers was studied. It showed that the Freundlich isotherm is a better fit for βCD-TDI, while the Langmuir isotherm is a better fit for βCD-HMDI. The pseudo-second-order kinetic model represented the adsorption process for both of the polymers. The thermodynamic study showed that βCD-TDI polymer was more favourable towards 2,4-DNP when compared with βCD-HDI polymer. Under optimized conditions, both βCD polymers were successfully applied on various environmental water samples for the removal of 2,4-DNP. βCD-TDI polymer showed enhanced sorption capacity and higher removal efficiency (greater than 80%) than βCD-HDI (greater than 70%) towards 2,4-DNP. The mechanism involved was discussed, and the effects of cross-linkers on βCD open up new perspectives for the removal of toxic contaminants from a body of water.
Particular attention has been paid to capillary electrophoresis as versatile and environmentally friendly approach for enantioseparations of a wide spectrum of compounds. Cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) is a method of choice to provide effective separation toward hydrophobic and uncharged stereoisomers. The chiral discrimination of the solutes relies upon the partitioning between a given CD in the aqueous phase and micelles formed from a surfactant. Synergistic combinations of chiral selectors, surfactant, and modifier contribute to successful enantioseparations of the enantiomers. In this chapter, an application of CD-MEKC for the enantioseparation of selected imidazole drugs employing a dual CDs system is described.
One of the potentials of carrier-free cross-linked enzyme aggregates (CLEA) immobilization is the ability to be separated and reuse. Yet, it might be impeded by the poor mechanical stability resulting low recyclability. CLEA of CGTase from Bacillus lehensis G1 (CGTase G1-CLEA) using chitosan (CS) as a cross-linker demonstrated high activity recovery however, displayed poor reusability. Therefore, the relationship between mechanical strength and reusability is studied by enhancing the CS mechanical properties and applying a new co-aggregation approach. Herein, CS was chemically cross-linked with glutaraldehyde (GA) and GA was introduced as a co-aggregant (coGA). CGTase G1-CLEA developed using an improved synthesized chitosan-glutaraldehyde (CSGA) cross-linker and a new coGA technique showed to increase its mechanical stability which retained 63.4% and 52.2%, respectively compared to using CS that remained 33.1% of their initial activity after stirred at 500 rpm. The addition of GA impacted the morphology and interaction consequently stabilizing the CLEAs durability in production of cyclodextrins. As a result, the reusability of CGTase G1-CLEA with CSGA and coGA increased by 56.6% and 42.8%, respectively compared to previous CLEA after 5 cycles for 2 h of reaction. This verifies that the mechanical strength of immobilized enzyme influences the improvement of its operational stability.