Studies indicate that bacterial cross-contamination occurs during food preparation where bacteria can retent on the food contact surfaces and cause illness. The study evaluated the adherence of Campylobacter spp. to cutting boards, blades of knives and hands after cutting chilled, raw broiler parts (thighs + drumsticks, wings and livers). The adherence to cucumber cuts that were cut using the unwashed boards and knives was also analyzed. Generally, utensils have higher mean of Campylobacter spp. retained to them (1.4-223.3 MPN/ml rinse) than hands (0.7-43.4 MPN/ml rinse); however, Mann-Whitney U test showed no significant differences in the bacterial numbers found among the different surfaces. The transfer rates of Campylobacter spp. from utensils to cucumber cuts varied from 0% to more than 100%. The bacteria detected could be from the utensils and cucumber contamination before purchase or due to other factors where further investigation is required. The possibility is there for Campylobacter to spread to contact surfaces during chilled broiler handling; therefore, utensils and hands involved should be washed thoroughly especially before ready-to-eat food preparation.
Expansin increases cell wall extensibility to allow cell wall loosening and cell expansion even in the absence of hydrolytic activity. Previous studies showed that excessive overexpression of expansin gene resulted in defective growth (Goh et al., 2014; Rochange et al., 2001) [1,2] and altered cell wall chemical composition (Zenoni et al., 2011) [3]. However, the molecular mechanism on how the overexpression of non-enzymatic cell wall protein expansin can result in widespread effects on plant cell wall and organ growth remains unclear. We acquired transcriptomic data on previously reported transgenic Arabidopsis line (Goh et al., 2014) [1] to investigate the effects of overexpressing a heterologus cucumber expansin gene (CsEXPA1) on the global gene expression pattern during early and late phases of etiolated hypocotyl growth.
Insertion and Deletion (InDel) are common features in genomes and are associated with genetic variation. The whole-genome re-sequencing data from two parents (X1 and X2) of the elite cucumber (Cucumis sativus) hybrid variety Lvmei No.1 was used for genome-wide InDel polymorphisms analysis. Obtained sequence reads were mapped to the genome reference sequence of Chinese fresh market type inbred line '9930' and gaps conforming to InDel were pinpointed. Further, the level of cross-parents polymorphism among five pairs of cucumber breeding parents and their corresponding hybrid varieties were used for evaluating hybrid seeds purity test efficiency of InDel markers. A panel of 48 cucumber breeding lines was utilized for PCR amplification versatility and phylogenetic analysis of these markers. In total, 10,470 candidate InDel markers were identified for X1 and X2. Among these, 385 markers with more than 30 nucleotide difference were arbitrary chosen. These markers were selected for experimental resolvability through electrophoresis on an Agarose gel. Two hundred and eleven (211) accounting for 54.81% of markers could be validated as single and clear polymorphic pattern while 174 (45.19%) showed unclear or monomorphic genetic bands between X1 and X2. Cross-parents polymorphism evaluation recorded 68 (32.23%) of these markers, which were designated as cross-parents transferable (CPT) InDel markers. Interestingly, the marker InDel114 presented experimental transferability between cucumber and melon. A panel of 48 cucumber breeding lines including parents of Lvmei No. 1 subjected to PCR amplification versatility using CPT InDel markers successfully clustered them into fruit and common cucumber varieties based on phylogenetic analysis. It is worth noting that 16 of these markers were predominately associated to enzymatic activities in cucumber. These agarose-based InDel markers could constitute a valuable resource for hybrid seeds purity testing, germplasm classification and marker-assisted breeding in cucumber.
Rice husk, an agricultural waste from the rice industry, can cause serious environmental pollution if not properly managed. However, rice husk ash (RHA) has been found to have many positive properties, making it a potential replacement for non-renewable peat in soilless planting. Thus, this study investigated the impact of a RHA composite substrate on the growth, photosynthetic parameters, and fruit quality of cucumber (Yuyi longxiang variety) and melon (Yutian yangjiaomi variety). The RHA, peat, vermiculite, and perlite were blended in varying proportions, with the conventional seedling substrate (peat:vermiculite:perlite = 1:1:1 volume ratio) serving as the control (CK). All plants were cultivated in barrels filled with 10L of the mixed substrates. The results from this study found that RHA 40 (RHA:peat:vermiculite:perlite = 4:4:1:1 volume ratio) significantly enhanced substrate ventilation and positively influenced the stem diameter, root activity, seedling index, chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of cucumber and melon plants. Additionally, plant planted using RHA 40, the individual fruit weight of cucumber and melon found to increase by 34.62% and 21.67%, respectively, as compared to the control. Aside from that, both cucumber and melon fruits had significantly higher sucrose, total soluble sugar, vitamin C, and soluble protein levels. This subsequently improved the activity of sucrose synthase and sucrose phosphate synthase in both cucumber and melon. In conclusion, the RHA 40 found to best promote cucumber and melon plant growth, increase plant leaf photosynthesis, and improve cucumber and melon fruit quality, making it a suitable substrate formula for cucumber and melon cultivation in place of peat.
Cross contamination is one of the most important contributing factors in foodborne illness
originating in household environments. The objective of this research was to determine the
transfer between naturally contaminated chicken liver and leg to cutting board, hand glove,
knife and cucumber, during slicing. The microorganism tested was Campylobacter jejuni and
the results showed that the pathogen transferred to all utensils, at different transfer rate, despite
the low level of the naturally contaminating pathogen. With unknown concentration bacteria in
the naturally contaminated samples, a proportion of the utensils were still contaminated with C.
jejuni and not surprisingly, when the sample were contaminated with higher concentrations of
the pathogen, a higher proportion of the utensils had detectable C. jejuni cells present, though
in many cases cross contamination seems to be a random event. Transfer of the naturally
contaminating C. jejuni from the chicken liver and leg to the utensils were
CONTEXT: This study addresses the development of sustainable pyridinium ionic liquids (ILs) because of their potential applications in agriculture and pharmaceuticals. Pyridinium-based ILs are known for their low melting points, high thermal stability, and moderate solvation properties. We synthesized three novel pyridinium-based ILs: 1-(2-(isopentyloxy)-2-oxoethyl)pyridin-1-ium chloride, 1-(2-(hexyloxy)-2-oxoethyl)pyridin-1-ium chloride, and 1-(2-(benzyloxy)-2-oxoethyl)pyridin-1-ium chloride. The biological activities of these compounds were evaluated through plant growth promotion, herbicidal, and insecticidal assays. Our results show that the benzyloxy derivative significantly enhances wheat and cucumber growth, whereas the isopentyloxy compound has potent herbicidal effects. Computational methods, including DFT calculations and molecular docking, were applied to understand the structure‒activity relationships (SARs) and mechanisms of action.
METHODS: The computational techniques involved dispersion-corrected density functional theory (DFT) with the B3LYP functional and the 6-311G** basis set. Grimme's D3 corrections were included to account for dispersion interactions. The calculations were performed via GAMESS-US software. Quantum descriptors of reactivity, such as ionization potential, electron affinity, chemical potential, and electrophilicity index, were derived from the HOMO and LUMO energies. Molecular docking studies were conducted via the CB-Dock server via AutoDock Vina software to predict binding affinities to cancer-related proteins. Petra/Osiris/Molinspiration (POM) analysis was used to predict the drug likeness and other pharmaceutical properties of the synthesized ILs.
Matched MeSH terms: Cucumis sativus/drug effects; Cucumis sativus/growth & development
A cucumber green mosaic mottle virus (CGMMV) full-length clone was developed for the expression of Hepatitis B surface antigen (HBsAg). The expression of the surface displayed HBsAg by the chimeric virus was confirmed through a double antibody sandwich ELISA. Assessment of the coat protein composition of the chimeric virus particles by SDS-PAGE analysis showed that 50% of the coat proteins were fused to the HBsAg. Biological activity of the expressed HBsAg was assessed through the stimulation of in vitro antibody production by cultured peripheral blood mononuclear cells (PBMC). PBMC that were cultured in the presence of the chimeric virus showed up to an approximately three-fold increase in the level of anti HBsAg immunoglobulin thus suggesting the possible use of this new chimeric virus as an effective Hepatitis B vaccine.
Treatment with hypovirulent binucleate Rhizoctonia (HBNR) isolates induced systemic resistance against anthracnose infected by Colletotrichum orbiculare in cucumber, as there were no direct interaction between HBNR and C. orbiculare. This is because of the different distances between HBNR and C. orbiculare, where the root was treated with HBNR isolate and C. orbiculare was challenged and inoculated in leaves or first true leaves were treated with HBNR isolate and C. orbiculare was challenged and inoculated in second true leaves. The use of barley grain inocula and culture filtrates of HBNR significantly reduced the lesion diameter compared to the control (p = 0.05). The total lesion diameter reduction by applying barley grain inoculum of HBNR L2, W1, W7, and Rhv7 was 28%, 44%, 39%, and 40%, respectively. Similar results was also observed in treatment using culture filtrate, and the reduction of total lesion diameter by culture filtrate of HBNR L2, W1, W7, and Rhv7 was 45%, 46%, 42%, and 48%, respectively. When cucumber root was treated with culture filtrates of HBNR, the lignin was enhanced at the pathogen penetration, which is spread along the epidermis tissue of cucumber hypocotyls. Peroxidase activity in hypocotyls in the treated cucumber plant with culture filtrates of HBNR significantly increased before and after inoculation of pathogens as compared to the control. Significant enhancement was also observed in the fast-moving anodic peroxidase isozymes in the treated plants with culture filtrates of HBNR. The results showed the elicitor(s) contained in culture filtrates in HBNR. The lignin deposition as well as the peroxidase activity is an important step to prevent systemically immunised plants from pathogen infection.
This study aimed to determine the biofilm formation ability by Salmonella Typhi on cucumber, mango and guava surface, as well as to determine the relationship between time contact and biofilm formation. Crystal violet assay was performed to quantify the biofilm formation based on the value of optical density at 570 nm of the destaining crystal violet at the specific interval time. The result showed that the attachment of the bacterial cells on the fresh produce surface increased with the contact time. The readings of OD570at time 12 h for cucumber, mango and guava surfaces were 0.824, 0.683 and 0.598, respectively, indicating that the biofilm formation by Salmonella Typhi on different fresh produce surface varied with time. Since the result showed that Salmonella Typhi formed biofilm on fresh produce surfaces, hygienic practice from farm to fork including handling, processing, distribution and storage of the fresh produce should be of concern.
Klebsiella pneumoniae (K. pneumoniae) is one of the most important members of Klebsiella genus in Enterobacteriacae family, which is responsible for pneumonia (the destructive lung inflammation disease). Vegetables are known as source of contamination with K. pneumonia. Raw vegetables are usually consumed in salads and other dishes. The aim of this study was to investigate the occurrence of K. pneumoniae in raw vegetables marketed in Malaysia. Two hundred commonly used salad vegetables (lettuces, parsley, cucumber, tomato and carrot) from hypermarkets and wet markets were investigated for presence of K. pneumoniae using Most Probable Number-Polymerase Chain Reaction (MPN-PCR). K. pneumoniae was found to be significantly more frequent (100%) and (82.5%) in lettuce and cucumbers, respectively. K. pneumoniae contamination was lowest in carrot samples (30%). All samples were contaminated with K. pneumoniae ranging from
A headspace single-drop microextraction (HS-SDME) procedure is optimized for the analysis of organochlorine and organophosphorous pesticide residues in food matrices, namely cucumbers and strawberries by gas chromatography with an electron capture detector. The parameters affecting the HS-SDME performance, such as selection of the extraction solvent, solvent drop volume, extraction time, temperature, stirring rate, and ionic strength, were studied and optimized. Extraction was achieved by exposing 1.5 microL toluene drop to the headspace of a 5 mL aqueous solution in a 15-mL vial and stirred at 800 rpm. The analytical parameters, such as linearity, correlation coefficients, precision, limits of detection (LOD), limits of quantification (LOQ), and recovery, were compared with those obtained from headspace solid-phase microextraction (HS-SPME) and solid-phase extraction. The mean recoveries for all three methods were all above 70% and below 104%. HS-SPME was the best method with the lowest LOD and LOQ values. Overall, the proposed HS-SDME method is acceptable in the analysis of pesticide residues in food matrices.
This study focuses on the biodegradation of recalcitrant, coloured compounds resulting from auto-oxidation of Acid Orange 7 (AO7) in a sequential facultative anaerobic-aerobic treatment system. A novel mixed bacterial culture, BAC-ZS, consisting of Brevibacillus panacihumi strain ZB1, Lysinibacillus fusiformis strain ZB2, and Enterococcus faecalis strain ZL bacteria were isolated from environmental samples. The acclimatisation of the mixed culture was carried out in an AO7 decolourised solution. The acclimatised mixed culture showed 98 % decolourisation within 2 h of facultative anaerobic treatment using yeast extract and glucose as co-substrate. Subsequent aerobic post treatment caused auto-oxidation reaction forming dark coloured compounds that reduced the percentage decolourisation to 73 %. Interestingly, further agitations of the mixed culture in the solution over a period of 48 h significantly decolourise the coloured compounds and increased the decolourisation percentage to 90 %. Analyses of the degradation compounds using UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC) showed complete degradation of recalcitrant AO7 by the novel BAC-ZS. Phytotoxicity tests using Cucumis sativus confirmed the dye solution after post aerobic treatment were less toxic compared to the parent dye. The quantitative real-time PCR revealed that E. faecalis strain ZL was the dominant strain in the acclimatised mix culture.
Matched MeSH terms: Cucumis sativus/drug effects; Cucumis sativus/growth & development
Cucumber (Cucumis sativus L.) is one of the most important vegetable fruits in Malaysia. Cucumber is principally grown in the states of Johor, Kelantan, and Perak. The broad host range Enterobacteriaceae pathogen, Pectobacterium carotovorum, can cause soft rot on stems or cucumber fruit. In Malaysia, cucumber is produced in a warm, humid climate, thus the plant is susceptible to attack by P. carotovorum at any time during production. In 2010, cucumber samples with wilted and chlorotic leaves, water-soaked lesions, and collapsed fruits were found in multiple fields. Small pieces of infected stems and fruit were immersed in 5 ml of saline solution (0.85% NaCl) for 20 min and then 50 μl of this suspension was spread onto nutrient agar (NA) and incubated at 27°C for 24 h. White-to-pale gray colonies with irregular margins were selected for analysis. For pathogenicity tests, cucumber fruits were surface sterilized by ethyl alcohol 70%, washed with sterilized distilled water, cut into small pieces, and inoculated with 20 μl of 108 CFU/ml suspensions of five representative strains. Cucumber plants were grown for 3 weeks in sterilized soil and their stems were inoculated with 20 μl of 108 CFU/ml of bacterial suspension. Inoculated samples and control (noninoculated) plants were placed in a growth chamber with 80 to 90% relative humidity at 27°C. Symptoms occurred on fruit slices and stems after 1 to 3 days and appeared the same as naturally infected samples, but the control samples remained healthy. Koch's postulates were fulfilled with the reisolation of cultures with the same characteristics as described earlier. Hypersensitivity reaction (HR) assays were done by infiltrating 108 CFU/ml of bacterial suspension into tobacco leaf epidermis and HR developed. All strains were subjected to biochemical and morphological assays, as well as molecular assessment. The strains were gram negative, facultative anaerobes, rod shaped, able to macerate potato slices and growth at 37°C; catalase positive; oxidase and phosphatase negative; able to degrade pectate; sensitive to erythromycin; negative for utilization of α-methyl glycoside, indole production, and reduction of sugars from sucrose; acid production from arabitol, sorbitol, and utilization of citrate were negative, but positive for raffinose and melibiose utilization. PCR amplification of the pel gene by Y1 and Y2 primers produced a 434-bp fragment on agarose gel 1% (1). Amplification of intergenic transcribed spacer region by G1 and L1 primers gave two main bands at approximately 535 and 580 bp on agarose gel 1.5%. The ITS-PCR products were digested with RsaI restriction enzyme (3). On the basis of biochemical and morphological characteristics, PCR-based pel gene and characterization of the ITS region, and digestion of the ITS-PCR products with RsaI restriction enzyme, all isolates were identified as P. carotovorum subsp. carotovorum. To our knowledge, this is the first report of soft rot caused by P. carotovorum subsp. carotovorum on cucumber from Malaysia. References: (1) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (2) N. W Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society Press, St. Paul, 2001. (3) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
Fusarium wilt disease is one of the most problematic and destructive disease in cucumber production. The causative agents are Fusarium oxysporum and F. solani. These pathogens are soil borne and transmitted through infested soil and water. A field survey was conducted to study the disease prevalence in the major growing areas of cucumber in Peninsular Malaysia. Field study revealed that the disease was highly prevalence in the field with the disease incidence was in the range of 10%-60%. The morphological properties of F. oxysporum are microconidia (3.8-15.7 μm × 2.9-4.9 μm), macroconidia (14.8-38.5 μm × 2.4-5.7 μm) and number of septate was 1-4. While for F. solani are microconidia (3.39-14.63 μm × 2.36-4.44 μm), macroconidia (7.22-50.46 μm × 2.43-6.14 μm) and number of septate was 1-5. Based on molecular identification had confirmed that the disease is caused by F. oxysporum and F. solani with similarity index of 99%-100% based on internal transcribed spacer (ITS) gene sequences. The pathogenicity test showed that the symptoms of Fusarium wilt disease was firstly appeared as yellowing of old leaves. Progressively, the infected plant will be wilted and finally died. The outputs of this study are highly important to establish an effective disease management programme to reduce disease prevalence and yield loss in the field.
To characterize the production and larvicidal activity of Xenorhabdus stockiae KUT6 Petroleum ether extracts from Luria Broth and induced Quorum sensing medium containing N-3- oxododecanoyl Homoserine Lactone inducer against dengue vector Aedes aegypti. The Galleria mellonella larvae were reared for the isolation of Steinernema saimkayi symbiont Xenorhabdus stockiae KUT6 from Cucumber field soil sample in NBTA. Then for the extraction of compounds the KUT6 strains were cultured in Luria Broth and Quorum Sensing optimized media using N-3-oxododecanoyl homoserine lactone inducer. The larvicidal activity of Xenorhabdus stockiae KUT6 of petroleum ether extracts were bioassayed against 4th instar Aedes aegypti dengue vector. The maximum rate of mortality were recorded of the samples A-24h, B-48h, C-72h, A1-24h, B1-48h, C1-72h at different concentrations 50 µg/ml, 100 µg/ml and 150 µg/ml respectively for 24h to 72h of exposure treatment. The morphological characteristics of Xenorhabdus stockiae KUT6 in NBTA were red core colonies with blue background surrounded by zone of inhibition. After 24h exposure maximum rate of 100% mortality of Aedes aegypti 4th instar larvae was attained when treated with sample C1-72h 50 µg/ml of the petroleum ether extracts of quorum sensed medium whereas the sample C 72h petroleum ether extracts of KUT6 cultured in Luria broth recorded 100% mortality at 150 µg on 24h exposure indicates enhancement in the product yield. The study assures the use of Xenorhabdus stockiae KUT6 petroleum ether extracts as biocontrol agent could be beneficial for the control of dengue vectors.
Mobile elements are major regulators of genome evolution through their effects on genome size and chromosome structure in higher organisms. Non-long terminal repeat (non-LTR) retrotransposons, one of the subclasses of transposons, are specifically inserted into repetitive DNA sequences. While studies on the insertion of non-LTR retrotransposons into ribosomal RNA genes and other repetitive DNA sequences have been reported in the animal kingdom, studies in the plant kingdom are limited. Here, using FISH, we confirmed that Menolird18, a member of LINE (long interspersed nuclear element) in non-LTR retrotransposons and found in Cucumis melo, was inserted into ITS and ETS (internal and external transcribed spacers) regions of 18S rDNA in melon and cucumber. Beside the 18S rDNA regions, Menolird18 was also detected in all centromeric regions of melon, while it was located at pericentromeric and sub-telomeric regions in cucumber. The fact that FISH signals of Menolird18 were found in centromeric and rDNA regions of mitotic chromosomes suggests that Menolird18 is a rDNA and centromere-specific non-LTR retrotransposon in melon. Our findings are the first report on a non-LTR retrotransposon that is highly conserved in 2 different plant species, melon and cucumber. The clear distinction of chromosomal localization of Menolird18 in melon and cucumber implies that it might have been involved in the evolutionary processes of the melon (C. melo) and cucumber (C. sativus) genomes.
Campylobacter jejuni was found to occur at high prevalence in the raw salad vegetables examined. Previous reports describe cross-contamination involving meat; here we investigated the occurrence of cross-contamination and decontamination events in the domestic kitchen via C. jejuni-contaminated vegetables during salad preparation. This is the first report concerning quantitative cross-contamination and decontamination involving naturally contaminated produce. The study was designed to simulate the real preparation of salad in a household kitchen, starting with washing the vegetables in tap water, then cutting the vegetables on a cutting board, followed by slicing cucumber and blanching (heating in hot water) the vegetables in 85 degrees C water. Vegetables naturally contaminated with C. jejuni were used throughout the simulation to attain realistic quantitative data. The mean of the percent transfer rates for C. jejuni from vegetable to wash water was 30.1 to 38.2%; from wash water to cucumber, it was 26.3 to 47.2%; from vegetables to cutting board, it was 1.6 to 10.3%; and from cutting board to cucumber, it was 22.6 to 73.3%. The data suggest the wash water and plastic cutting board as potential risk factors in C. jejuni transmission to consumers. Washing of the vegetables with tap water caused a 0.4-log reduction of C. jejuni attached to the vegetables (most probable number/gram), while rapid blanching reduced the number of C. jejuni organisms to an undetectable level.
The persistence of metsulfuron-methyl (methyl 2-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosul fonyl]benzoate) in nonautoclaved and autoclaved Selangor, Lating, and Serdang series soils incubated at different temperatures and with different moisture contents was investigated under laboratory conditions using cucumber (Cucumis sativus L.) as the bioassay species. Significant degradation of metsulfuron-methyl was observed in nonautoclaved soil compared with the autoclaved soil sample, indicating the importance of microorganisms in the breakdown process. At higher temperatures the degradation rate in nonautoclaved soil improved with increasing soil moisture content. In nonautoclaved Selangor, Lating and Serdang series soils, the half-life was reduced from 4.79 to 2.78 days, 4.9 to 3.5, and from 3.3 to 1.9 days, respectively, when the temperature was increased from 20 degrees to 30 degrees C at 80% field capacity. Similarly, in nonautoclaved soil, the half-life decreased with an increasing soil moisture from 20% to 80% at 30 degrees C in the three soils studied. In the autoclaved soil, the half-life values were slightly higher than those obtained in the nonautoclaved soils, perhaps indicating that the compound may be broken down by nonbiological processes. The fresh weight of the bioassay species was reduced significantly in Serdang series soil treated with metsulfuron-methyl at 0.1 ppm. However, the reduction in fresh weight of the seedlings was least in Lating series soil, followed by Selangor series soil.
This study aims to determine the frequency and density of potentially pathogenic Vibrio parahaemolyticus, defined as those possessing thermostable-direct hemolysin (tdh) and/or tdh-related hemolysin (trh) genes, in raw salad vegetables at retail level in Selangor, Malaysia. A combination of Most Probable Number - Polymerase Chain Reaction (MPN-PCR) method was applied to detect the presence of tdh and/or trh gene-possessing V. parahaemolyticus and to enumerate their density in the samples. A total of 276 samples of vegetables commonly eaten raw in Malaysia (Cabbage = 30; Carrot = 31; Cucumber = 28; Four winged bean = 26; Indian pennywort = 17; Japanese parsley = 21; Lettuce = 16; Long bean = 32; Sweet potato = 29; Tomato = 38; Wild cosmos = 8) were analyzed. The samples were purchased from two supermarkets (A and B) and two wet markets (C and D). With the MPN-PCR technique, about 12.0% of the samples were positive for the presence of V. parahaemolyticus tdh-positive, with maximum densities of up to 39 MPN/g. The total frequency of V. parahaemolyticus trh-positive in the samples was 10.1%, with maximum concentration 15 MPN/g. V. parahaemolyticus tdh-positive was most prevalent in samples from Wet Market C (20.78%) and also in vegetable type Oenanthe stolonifera (Japanese parsley) with 19.0%, while V. parahaemolyticus trhpositive was predominant in samples from Wet Market D (16.7%) and was most frequent in both Oenanthe stolonifera (Japanese parsley) and Cucumis sativus (Cucumber) with 14.3% prevalence for each type. The results highlighted the fact that raw vegetables could be contaminated with virulent V. parahaemolyticus and could act as a transmission route, thus poses risk to consumers from the consumption of raw vegetables. To the author’s knowledge, this is the first assessment of V. parahaemolyticus carrying tdh and trh genes in raw
vegetables from retail outlets in Malaysia.