Displaying all 11 publications

Abstract:
Sort:
  1. Lee LP, Tan KY, Tan CH
    Toxicon, 2020 Oct 15;185:91-96.
    PMID: 32585219 DOI: 10.1016/j.toxicon.2020.06.012
    The lesser-known Sundaic lance-headed pit vipers Trimeresurus wiroti (Malaysia) and Trimeresurus puniceus (Indonesia) contribute to the disease burden of snakebite envenomation in Southeast Asia, but their venom toxicity and neutralization remain insufficiently investigated. This study demonstrated that both venoms were procoagulant (involving thrombin-like activity), hemorrhagic, and lethal to mice, with T. wiroti venom being more lethal (LD50 = 0.78 μg/g c.f. 1.21 μg/g). The hetero-specific antivenom from Thailand, Green Pit Viper Antivenom (GPVAV, raised against Trimeresurus albolabris) cross-reacted with T. wiroti and T. puniceus venoms with a higher efficacy of immunological binding activity for the latter. The antivenom was also effective in cross-neutralizing the procoagulant, hemorrhagic and lethal effects of the venoms. In lethality neutralization, GPVAV showed a potency of 0.79-1.05 mg venom per mL antivenom, corresponding to the complete neutralization of approximately 8-10 mg venom per unit vial of antivenom for T. wiroti and T. puniceus venoms. Taken together, it was inferred that T. wiroti, T. puniceus, and T. albolabris venoms share common toxin epitopes, thus enabling the cross-neutralization observed. These findings suggest that GPVAV may be potentially useful in the management of envenomation by T. wiroti and T. puniceus while awaiting clinical trial and validation.
    Matched MeSH terms: Crotalid Venoms/toxicity*
  2. Tan NH, Tan CS
    Toxicon, 1989;27(6):697-702.
    PMID: 2749766
    Sumatran pit viper (Trimeresurus sumatranus sumatranus) venom was fractionated by DEAE-Sephacel ion exchange chromatography into seven fractions. Fractions 4, 5 and 6 were lethal to mice and exhibited strong hemorrhagic activity, as well as some enzymatic activities. Fraction 6 also exhibited potent anticoagulant and thrombin-like activities. Analysis of the biological and enzymatic properties of the three lethal fractions suggests that the major lethal component of fractions 4 and 5 may be the hemorrhagic principle, and that the lethality of fraction 6 may be due to the hemorrhagic principle and/or the anticoagulant principle.
    Matched MeSH terms: Crotalid Venoms/toxicity
  3. Tan CH, Tan NH, Sim SM, Fung SY, Jayalakshmi P, Gnanathasan CA
    Toxicon, 2012 Dec 1;60(7):1259-62.
    PMID: 22975088 DOI: 10.1016/j.toxicon.2012.08.012
    Mice experimentally envenomed with Hypnale hypnale venom (1× and 1.5×LD₅₀) developed acute kidney injury (AKI) principally characterized by raised blood urea and creatinine. Prolonged blood clotting time and hemorrhage in lungs implied bleeding tendency. Pallor noted in most renal cortices was suggestive of renal ischemia secondary to consumptive coagulopathy. Intravenous infusion of Hemato polyvalent antivenom following experimental envenoming effectively prevented death and AKI in all mice, supporting its potential therapeutic use in envenoming cases.
    Matched MeSH terms: Crotalid Venoms/toxicity*
  4. Tan NH, Saifuddin MN
    PMID: 1982873
    1. The edema-inducing activity of 24 venoms from snakes of the subfamilies of Elapinae, Hydrophiini, Crotalinae and Viperinae was determined. 2. All snake venoms tested are very potent edema inducers. The minimum edema doses of the venoms ranged from 0.16 to 3.41 micrograms per mouse paw. 3. The venoms induced a rapid onset edema which peaked within 1 h of injection and declined thereafter; at low dose, however, some venoms induced a rapid onset edema that sustained over a longer duration.
    Matched MeSH terms: Crotalid Venoms/toxicity
  5. Ponnudurai G, Chung MC, Tan NH
    Toxicon, 1993 Aug;31(8):997-1005.
    PMID: 8212052
    The major hemorrhagin (termed rhodostoxin) of the venom of Calloselasma rhodostoma (Malayan pit viper) was purified to electrophoretic homogeneity by Sephadex G-200 gel filtration followed by high performance ion exchange chromatography. The purified hemorrhagin also yielded a single peak in reversed-phase HPLC. It had an isoelectric point of 5.3 and a mol. wt of 34,000. Rhodostoxin exhibited potent proteolytic, hemorrhagic and edema-inducing activities but was not lethal to mice at a dose of 6 microgram/g (i.v.). Treatment of rhodostoxin with EDTA eliminated both the proteolytic and hemorrhagic activities completely. The N-terminal sequence of rhodostoxin was determined to be NHEIKRHVDIVVVXDSRFCTK.
    Matched MeSH terms: Crotalid Venoms/toxicity
  6. Tan NH, Ponnudurai G
    PMID: 1676959
    1. The hemorrhagic, procoagulant, anticoagulant, protease, arginine ester hydrolase, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, phospholipase A and L-amino acid oxidase activities of 50 venom samples from 20 taxa of rattlesnake (genera Crotalus and Sistrurus) were examined. 2. The results show that notwithstanding individual variations in the biological activities of Crotalus venoms and the wide ranges of certain biological activities observed, there are some common characteristics at the genus and species levels. 3. The differences in biological activities of the venoms compared can be used for differentiation of the species. Particularly useful for this purpose are the thrombin-like enzyme, protease, arginine ester hydrolase, hemorrhagic and phospholipase A activities and kaolin-cephalin clotting time measurements.
    Matched MeSH terms: Crotalid Venoms/toxicity
  7. Nget Hong Tan, Chon Seng Tan, Hun Teck Khor
    Int. J. Biochem., 1989;21(12):1421-6.
    PMID: 2612728
    1. The major phospholipase A2 (PLA-DE4) of the venom of Trimeresurus purpureomaculatus (shore pit viper) has been purified to electrophoretic homogeneity. 2. The isoelectric point of the purified enzyme was determined to be 4.20, and the mol. wt was 31,700 as estimated by Sephadex G-75 gel filtration chromatography; and 14,000 as estimated by SDS-polyacrylamide gel electrophoresis. The purified enzyme hydrolyzed phosphatidylcholine (PC) faster than phosphatidylethanolamine (PE), whereas phosphatidylserine (PS) was not hydrolyzed at all (PC greater than PE greater than PS =0). However, in reaction system consisted of mixtures of PC and PS, phosphatidylserine was effectively hydrolyzed by the enzyme. 4. The phospholipase A2 exhibited edema-forming activity but not hemolytic, hemorrhagic or anticoagulant activities. It was not lethal to mice at a dosage of 10 micrograms/g by i.v. route.
    Matched MeSH terms: Crotalid Venoms/toxicity
  8. Tan NH, Armugam A, Tan CS
    Comp. Biochem. Physiol., B, 1989;93(4):757-62.
    PMID: 2553329
    1. The lethalities, anticoagulant effects, hermorrhagic, thrombin-like enzyme, hyaluronidase, protease, arginine ester hydrolase, 5'-nucleotidase, L-amino acid oxidase, alkaline phosphomonoesterase, phosphodiesterase and phospholipase A activities of twenty-three samples of venoms from twelve species of Asian lance-headed pit vipers (genus Trimeresurus) were examined. 2. The results indicate that notwithstanding individual variations in venom properties, the differences in biological properties of the Trimeresurus venoms can be used for the differentiation of venoms from different species of Trimeresurus. 3. The results also suggest that differences in the biological properties of snake venoms are useful parameters in the classification of snake species. 4. Our results indicate that venoms from the species T. okinavensis exhibited biological properties markedly different from other Trimeresurus venoms examined. This observation supports the recently proposed reclassification of T. okinavensis as a member of the genus Ovophis, rather than the genus Trimeresurus.
    Matched MeSH terms: Crotalid Venoms/toxicity*
  9. Tan NH, Tan CS
    Toxicon, 1989;27(3):349-57.
    PMID: 2543103
    Trimeresurus wagleri (speckled pit viper) venom exhibited the usual set of enzyme activities occurring in pit viper venoms but the content of alkaline phosphomonoesterase was unusually high, whereas the proportions of protease and arginine ester hydrolase were very low. The venom also exhibited weak thrombin-like activity but did not exhibit hemorrhagic or anticoagulant activity. Analysis of the Sephadex G-200 gel filtration fractions of the venom indicated that the lethal fraction was a low mol.wt protein, and that fractions exhibiting phosphodiesterase, phosphomonoesterase, arginine ester hydrolase, thrombin-like enzyme, L-amino acid oxidase and phospholipase A activities were not lethal. Two lethal toxins, designated as wagleri toxins 1 and 2, were isolated from the venom using Sephadex G-50 gel filtration chromatography followed by SP-Sephadex C-25 ion exchange chromatography. The mol.wts of the two toxins were 8900 by gel filtration. The LD50 (i.v.) values in mice for wagleri toxins 1 and 2 are 0.17 microgram/g and 0.19 microgram/g, respectively.
    Matched MeSH terms: Crotalid Venoms/toxicity
  10. Fung SY, Tan NH, Sim SM
    Trop Biomed, 2010 Dec;27(3):366-72.
    PMID: 21399576 MyJurnal
    The protective effects of Mucuna pruriens seed extract (MPE) against the cardio-respiratory depressant and neuromuscular paralytic effects induced by injection of Calloselasma rhodostoma (Malayan pit viper) venom in anaesthetized rats were investigated. While MPE pretreatment did not reverse the inhibitory effect of the venom on the gastrocnemius muscle excitability, it significantly attenuated the venom-induced cardio-respiratory depressant effects (p < 0.05). The protection effects may have an immunological mechanism, as indicated by the presence of several proteins in the venom that are immunoreactive against anti-MPE. However, we cannot rule out the possibility that the pretreatment may exert a direct, non-immunological protective action against the venom.
    Matched MeSH terms: Crotalid Venoms/toxicity
  11. Tan CH, Tan KY, Yap MK, Tan NH
    Sci Rep, 2017 02 27;7:43237.
    PMID: 28240232 DOI: 10.1038/srep43237
    Tropidolaemus wagleri (temple pit viper) is a medically important snake in Southeast Asia. It displays distinct sexual dimorphism and prey specificity, however its venomics and inter-sex venom variation have not been thoroughly investigated. Applying reverse-phase HPLC, we demonstrated that the venom profiles were not significantly affected by sex and geographical locality (Peninsular Malaya, insular Penang, insular Sumatra) of the snakes. Essentially, venoms of both sexes share comparable intravenous median lethal dose (LD50) (0.56-0.63 μg/g) and cause neurotoxic envenomation in mice. LCMS/MS identified six waglerin forms as the predominant lethal principles, comprising 38.2% of total venom proteins. Fourteen other toxin-protein families identified include phospholipase A2, serine proteinase, snaclec and metalloproteinase. In mice, HPLC fractions containing these proteins showed insignificant contribution to the overall venom lethality. Besides, the unique elution pattern of approximately 34.5% of non-lethal, low molecular mass proteins (3-5 kDa) on HPLC could be potential biomarker for this primitive crotalid species. Together, the study unveiled the venom proteome of T. wagleri that is atypical among many pit vipers as it comprises abundant neurotoxic peptides (waglerins) but little hemotoxic proteinases. The findings also revealed that the venom is relatively well conserved intraspecifically despite the drastic morphological differences between sexes.
    Matched MeSH terms: Crotalid Venoms/toxicity*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links