Displaying all 2 publications

Abstract:
Sort:
  1. Sinniah A, Yazid S, Flower RJ
    Front Pharmacol, 2017;8:827.
    PMID: 29184504 DOI: 10.3389/fphar.2017.00827
    The anti-allergic cromones were originally synthesized in the 1960s by Fisons Plc, and the first drug to emerge from this program, disodium cromoglycate was subsequently marketed for the treatment of asthma and other allergic conditions. Whilst early studies demonstrated that the ability of the cromones to prevent allergic reactions was due to their 'mast cell stabilizing' properties, the exact pharmacological mechanism by which this occurred, remained a mystery. Here, we briefly review the history of these drugs, recount some aspects of their pharmacology, and discuss two new explanations for their unique actions. We further suggest how these findings could be used to predict further uses for the cromones.
    Matched MeSH terms: Cromolyn Sodium
  2. Ji, Wei Tan
    MyJurnal
    Mast cells (MCs) play a crucial role in the pathogenesis of allergic diseases due to their hypersensitive reaction to non-harmful substances that elicit an allergic response. As such, by interrupting certain signalling proteins within the signalling pathway of a MC, an allergic response may be avoided or inhibited. Compounds that attenuate the release of mediators from MCs are known as MC stabilizers. These drugs are clinically used to prevent MC effector responses towards common allergens. Although commonly prescribed clinical MC stabilizers such as disodium cromoglycate and ketotifen fumarate were used in the preventative treatment of various allergic diseases, there still remains a need of advancement towards the discovery of new MC stabilizing drugs that are able to target specific signalling molecules in order to provide better treatment option against these diseases. Among these newly discovered potential MC stabilizers, much efforts have been given to the inhibition of vital upstream signalling molecules such as spleen tyrosine kinase as well as surface receptors such as the high-affinity IgE receptor (FcεRI) and stem cell factor receptor (KIT). A recent study also reported that linker for activation of T cells (LAT) may also be an excellent molecular target for inhibiting MC degranulation. Although in most cases the exact mode of action of these molecules is yet to be elucidated, all these compounds have shown MC inhibition. Therefore, they might have potential therapeutic use in the treatment of allergies and allergy related diseases where MCs are majorly involved. Thus, this mini review will focus on summarising the potential signalling molecules or receptors that have been targeted to inhibit MC degranulation, particularly those located in the upstream signalling pathway.
    Matched MeSH terms: Cromolyn Sodium
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links