Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Hor CP, Hussin N, Nalliah S, Ooi WT, Tang XY, Zachariah S, et al.
    J Infect, 2020 08;81(2):e117-e119.
    PMID: 32474031 DOI: 10.1016/j.jinf.2020.05.058
    Matched MeSH terms: Coronavirus Infections/drug therapy
  2. Agarwal A, Hunt B, Stegemann M, Rochwerg B, Lamontagne F, Siemieniuk RA, et al.
    BMJ, 2020 Sep 04;370:m3379.
    PMID: 32887691 DOI: 10.1136/bmj.m3379
    UPDATES: This is the fourteenth version (thirteenth update) of the living guideline, replacing earlier versions (available as data supplements). New recommendations will be published as updates to this guideline.

    CLINICAL QUESTION: What is the role of drugs in the treatment of patients with covid-19?

    CONTEXT: The evidence base for therapeutics for covid-19 is evolving with numerous randomised controlled trials (RCTs) recently completed and underway. Emerging SARS-CoV-2 variants and subvariants are changing the role of therapeutics.

    WHAT IS NEW?: The guideline development group (GDG) defined 1.5% as a new threshold for an important reduction in risk of hospitalisation in patients with non-severe covid-19. Combined with updated baseline risk estimates, this resulted in stratification into patients at low, moderate, and high risk for hospitalisation. New recommendations were added for moderate risk of hospitalisation for nirmatrelvir/ritonavir, and for moderate and low risk of hospitalisation for molnupiravir and remdesivir. New pharmacokinetic evidence was included for nirmatrelvir/ritonavir and molnupiravir, supporting existing recommendations for patients at high risk of hospitalisation. The recommendation for ivermectin in patients with non-severe illness was updated in light of additional trial evidence which reduced the high degree of uncertainty informing previous guidance. A new recommendation was made against the antiviral agent VV116 for patients with non-severe and with severe or critical illness outside of randomised clinical trials based on one RCT comparing the drug with nirmatrelvir/ritonavir. The structure of the guideline publication has also been changed; recommendations are now ordered by severity of covid-19.

    ABOUT THIS GUIDELINE: This living guideline from the World Health Organization (WHO) incorporates new evidence to dynamically update recommendations for covid-19 therapeutics. The GDG typically evaluates a therapy when the WHO judges sufficient evidence is available to make a recommendation. While the GDG takes an individual patient perspective in making recommendations, it also considers resource implications, acceptability, feasibility, equity, and human rights. This guideline was developed according to standards and methods for trustworthy guidelines, making use of an innovative process to achieve efficiency in dynamic updating of recommendations. The methods are aligned with the WHO Handbook for Guideline Development and according to a pre-approved protocol (planning proposal) by the Guideline Review Committee (GRC). A box at the end of the article outlines key methodological aspects of the guideline process. MAGIC Evidence Ecosystem Foundation provides methodological support, including the coordination of living systematic reviews with network meta-analyses to inform the recommendations. The full version of the guideline is available online in MAGICapp and in PDF on the WHO website, with a summary version here in The BMJ. These formats should facilitate adaptation, which is strongly encouraged by WHO to contextualise recommendations in a healthcare system to maximise impact.

    FUTURE RECOMMENDATIONS: Recommendations on anticoagulation are planned for the next update to this guideline. Updated data regarding systemic corticosteroids, azithromycin, favipiravir and umefenovir for non-severe illness, and convalescent plasma and statin therapy for severe or critical illness, are planned for review in upcoming guideline iterations.

    Matched MeSH terms: Coronavirus Infections/drug therapy*
  3. Satija S, Mehta M, Sharma M, Prasher P, Gupta G, Chellappan DK, et al.
    Future Med Chem, 2020 09;12(18):1607-1609.
    PMID: 32589055 DOI: 10.4155/fmc-2020-0149
    Matched MeSH terms: Coronavirus Infections/drug therapy*
  4. Kow CS, Hasan SS
    Am J Cardiol, 2020 11 01;134:153-155.
    PMID: 32891399 DOI: 10.1016/j.amjcard.2020.08.004
    Matched MeSH terms: Coronavirus Infections/drug therapy*
  5. Al-Hatamleh MAI, Hatmal MM, Sattar K, Ahmad S, Mustafa MZ, Bittencourt MC, et al.
    Molecules, 2020 Oct 29;25(21).
    PMID: 33138197 DOI: 10.3390/molecules25215017
    The new coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has recently put the world under stress, resulting in a global pandemic. Currently, there are no approved treatments or vaccines, and this severe respiratory illness has cost many lives. Despite the established antimicrobial and immune-boosting potency described for honey, to date there is still a lack of evidence about its potential role amid COVID-19 outbreak. Based on the previously explored antiviral effects and phytochemical components of honey, we review here evidence for its role as a potentially effective natural product against COVID-19. Although some bioactive compounds in honey have shown potential antiviral effects (i.e., methylglyoxal, chrysin, caffeic acid, galangin and hesperidinin) or enhancing antiviral immune responses (i.e., levan and ascorbic acid), the mechanisms of action for these compounds are still ambiguous. To the best of our knowledge, this is the first work exclusively summarizing all these bioactive compounds with their probable mechanisms of action as antiviral agents, specifically against SARS-CoV-2.
    Matched MeSH terms: Coronavirus Infections/drug therapy*
  6. Saniasiaya J, Kulasegarah J
    Ear Nose Throat J, 2020 Nov;99(9):597-598.
    PMID: 32744901 DOI: 10.1177/0145561320947255
    Matched MeSH terms: Coronavirus Infections/drug therapy*
  7. Chang CY, Chan KG
    J Infect, 2020 Sep;81(3):e29-e30.
    PMID: 32628960 DOI: 10.1016/j.jinf.2020.06.077
    Matched MeSH terms: Coronavirus Infections/drug therapy
  8. Md Insiat Islam Rabby
    J Pharm Pharm Sci, 2020;23(1):58-64.
    PMID: 32251618 DOI: 10.18433/jpps31002
    PURPOSE: SARS-CoV-2 first emerged in China in December 2019 and rapidly spread worldwide. No vaccine or approved drug is available to eradicate the virus, however, some drugs that are indicated for other afflictions seems to be potentially beneficial to treat the infection albeit without unequivocal evidence.   The aim of this article is to review the published background on the effectiveness of these drugs against COVID-19 Methods: A thorough literature search was conducted on recently published studies which have published between January 1 to March 25, 2020. PubMed, Google Scholar and Science Direct databases were searched Results: A total 22 articles were found eligible. 8 discuss about treatment outcomes from their applied drugs during treatment of COVID-19 patients, 4 report laboratory tests, one report animal trial and other 9 articles discuss recommendations and suggestions based on the treatment process and clinical outcomes of other diseases such as malaria, ebola, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). The data and/or recommendations are categorized in 4 classes: (a) anti-viral and anti-inflammatory drugs, (b) anti-malaria drugs, (c) traditional Chinese drugs and (d) other treatments/drugs.

    CONCLUSION: All examined treatments, although potentiality effective against COVID-19, need either appropriate drug development or clinical trial to be suitable for clinical use.

    Matched MeSH terms: Coronavirus Infections/drug therapy*
  9. Low ZY, Farouk IA, Lal SK
    Viruses, 2020 09 22;12(9).
    PMID: 32972027 DOI: 10.3390/v12091058
    Traditionally, drug discovery utilises a de novo design approach, which requires high cost and many years of drug development before it reaches the market. Novel drug development does not always account for orphan diseases, which have low demand and hence low-profit margins for drug developers. Recently, drug repositioning has gained recognition as an alternative approach that explores new avenues for pre-existing commercially approved or rejected drugs to treat diseases aside from the intended ones. Drug repositioning results in lower overall developmental expenses and risk assessments, as the efficacy and safety of the original drug have already been well accessed and approved by regulatory authorities. The greatest advantage of drug repositioning is that it breathes new life into the novel, rare, orphan, and resistant diseases, such as Cushing's syndrome, HIV infection, and pandemic outbreaks such as COVID-19. Repositioning existing drugs such as Hydroxychloroquine, Remdesivir, Ivermectin and Baricitinib shows good potential for COVID-19 treatment. This can crucially aid in resolving outbreaks in urgent times of need. This review discusses the past success in drug repositioning, the current technological advancement in the field, drug repositioning for personalised medicine and the ongoing research on newly emerging drugs under consideration for the COVID-19 treatment.
    Matched MeSH terms: Coronavirus Infections/drug therapy*
  10. Hrusak O, Kalina T, Wolf J, Balduzzi A, Provenzi M, Rizzari C, et al.
    Eur J Cancer, 2020 Jun;132:11-16.
    PMID: 32305831 DOI: 10.1016/j.ejca.2020.03.021
    INTRODUCTION: Since the beginning of COVID-19 pandemic, it is known that the severe course of the disease occurs mostly among the elderly, whereas it is rare among children and young adults. Comorbidities, in particular, diabetes and hypertension, clearly associated with age, besides obesity and smoke, are strongly associated with the need for intensive treatment and a dismal outcome. A weaker immunity of the elderly has been proposed as a possible explanation of this uneven age distribution. Thus, there is concern that children treated for cancer may allso be at risk for an unfavourable course of infection. Along the same line, anecdotal information from Wuhan, China, mentioned a severe course of COVID-19 in a child treated for leukaemia.

    AIM AND METHODS: We made a flash survey on COVID-19 incidence and severity among children on anticancer treatment. Respondents were asked by email to fill in a short Web-based survey.

    RESULTS: We received reports from 25 countries, where approximately 10,000 patients at risk are followed up. At the time of the survey, more than 200 of these children were tested, nine of whom were positive for COVID-19. Eight of the nine cases had asymptomatic to mild disease, and one was just diagnosed with COVID-19. We also discuss preventive measures that are in place or should be taken and treatment options in immunocompromised children with COVID-19.

    CONCLUSION: Thus, even children receiving anticancer chemotherapy may have a mild or asymptomatic course of COVID-19. While we should not underestimate the risk of developing a more severe course of COVID-19 than that observed here, the intensity of preventive measures should not cause delays or obstructions in oncological treatment.

    Matched MeSH terms: Coronavirus Infections/drug therapy
  11. Wong GL, Wong VW, Thompson A, Jia J, Hou J, Lesmana CRA, et al.
    Lancet Gastroenterol Hepatol, 2020 08;5(8):776-787.
    PMID: 32585136 DOI: 10.1016/S2468-1253(20)30190-4
    The COVID-19 pandemic has spread rapidly worldwide. It is common to encounter patients with COVID-19 with abnormal liver function, either in the form of hepatitis, cholestasis, or both. The clinical implications of liver derangement might be variable in different clinical scenarios. With growing evidence of its clinical significance, it would be clinically helpful to provide practice recommendations for various common clinical scenarios of liver derangement during the COVID-19 pandemic. The Asia-Pacific Working Group for Liver Derangement during the COVID-19 Pandemic was formed to systematically review the literature with special focus on the clinical management of patients who have been or who are at risk of developing liver derangement during this pandemic. Clinical scenarios covering the use of pharmacological treatment for COVID-19 in the case of liver derangement, and assessment and management of patients with chronic hepatitis B or hepatitis C, non-alcoholic fatty liver disease, liver cirrhosis, and liver transplantation during the pandemic are discussed.
    Matched MeSH terms: Coronavirus Infections/drug therapy
  12. McMahon JH, Hoy JF, Kamarulzaman A, Bekker LG, Beyrer C, Lewin SR
    Lancet, 2020 10 03;396(10256):943-944.
    PMID: 33010825 DOI: 10.1016/S0140-6736(20)32012-2
    Matched MeSH terms: Coronavirus Infections/drug therapy
  13. Singh Y, Gupta G, Satija S, Negi P, Chellappan DK, Dua K
    Dermatol Ther, 2020 Jul;33(4):e13501.
    PMID: 32359088 DOI: 10.1111/dth.13501
    Matched MeSH terms: Coronavirus Infections/drug therapy*
  14. Thalha AMM, Lee YY, Besari A, Omar SFS
    J R Coll Physicians Edinb, 2020 06;50(2):159-161.
    PMID: 32568289 DOI: 10.4997/JRCPE.2020.217
    Matched MeSH terms: Coronavirus Infections/drug therapy*
  15. Asif M, Saleem M, Saadullah M, Yaseen HS, Al Zarzour R
    Inflammopharmacology, 2020 Oct;28(5):1153-1161.
    PMID: 32803479 DOI: 10.1007/s10787-020-00744-0
    Coronavirus disease of 2019 (COVID-19) has emerged as a global health threat. Unfortunately, there are very limited approved drugs available with established efficacy against the SARs-CoV-2 virus and its inflammatory complications. Vaccine development is actively being researched, but it may take over a year to become available to general public. Certain medications, for example, dexamethasone, antimalarials (chloroquine/hydroxychloroquine), antiviral (remdesivir), and IL-6 receptor blocking monoclonal antibodies (tocilizumab), are used in various combinations as off-label medications to treat COVID-19. Essential oils (EOs) have long been known to have anti-inflammatory, immunomodulatory, bronchodilatory, and antiviral properties and are being proposed to have activity against SARC-CoV-2 virus. Owing to their lipophilic nature, EOs are advocated to penetrate viral membranes easily leading to membrane disruption. Moreover, EOs contain multiple active phytochemicals that can act synergistically on multiple stages of viral replication and also induce positive effects on host respiratory system including bronchodilation and mucus lysis. At present, only computer-aided docking and few in vitro studies are available which show anti-SARC-CoV-2 activities of EOs. In this review, role of EOs in the prevention and treatment of COVID-19 is discussed. A discussion on possible side effects associated with EOs as well as anti-corona virus claims made by EOs manufacturers are also highlighted. Based on the current knowledge a chemo-herbal (EOs) combination of the drugs could be a more feasible and effective approach to combat this viral pandemic.
    Matched MeSH terms: Coronavirus Infections/drug therapy*
  16. Aljabali AAA, Bakshi HA, Satija S, Metha M, Prasher P, Ennab RM, et al.
    Pharm Nanotechnol, 2020;8(4):323-353.
    PMID: 32811406 DOI: 10.2174/2211738508999200817163335
    BACKGROUND: The newly emerged coronavirus SARS-CoV-2, first reported in December 2019, has infected about five and a half million people globally and resulted in nearly 9063264 deaths until the 24th of June 2020. Nevertheless, the highly contagious virus has instigated an unimaginably rapid response from scientific and medical communities.

    OBJECTIVES: Pioneering research on molecular mechanisms underlying the viral transmission, molecular pathogenicity, and potential treatments will be highlighted in this review. The development of antiviral drugs specific to SARS-CoV-2 is a complicated and tedious process. To accelerate scientific discoveries and advancement, researchers are consolidating available data from associated coronaviruses into a single pipeline, which can be readily made available to vaccine developers.

    METHODS: In order to find studies evaluating the COVID-19 virus epidemiology, repurposed drugs and potential vaccines, web searches and bibliographical bases have been used with keywords that matches the content of this review.

    RESULTS: The published results of SARS-CoV-2 structures and interactomics have been used to identify potential therapeutic candidates. We illustrate recent publications on SARS-CoV-2, concerning its molecular, epidemiological, and clinical characteristics, and focus on innovative diagnostics technologies in the production pipeline. This objective of this review is to enhance the comprehension of the unique characteristics of SARS-CoV-2 and strengthen future control measures.

    Lay Summary: An innovative analysis is evaluating the nature of the COVID-19 pandemic. The aim is to increase knowledge of possible viral detection methods, which highlights several new technology limitations and advantages. We have assessed some drugs currently for patients (Lopinavir, Ritonavir, Anakinra and Interferon beta 1a), as the feasibility of COVID-19 specific antivirals is not presently known. The study explores the race toward vaccine development and highlights some significant trials and candidates in various clinical phases. This research addresses critical knowledge gaps by identifying repurposed drugs currently under clinical trials. Findings will be fed back rapidly to the researchers interested in COVID 19 and support the evidence and potential of possible therapeutics and small molecules with their mode of action.

    Matched MeSH terms: Coronavirus Infections/drug therapy*
  17. Ramachandran V, Marimuthu RR, Chinnambedu RS
    Med J Malaysia, 2020 05;75(3):314-315.
    PMID: 32467555
    No abstract provided.
    Matched MeSH terms: Coronavirus Infections/drug therapy*
  18. Premila Devi J, Noraini W, Norhayati R, Chee Kheong C, Badrul AS, Zainah S, et al.
    Euro Surveill, 2014 May 08;19(18).
    PMID: 24832116
    On 14 April 2014, the first laboratory-confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection was reported in Malaysia in a man in his mid-fifties, who developed pneumonia with respiratory distress, after returning from a pilgrimage to Saudi Arabia. The case succumbed to his illness three days after admission at a local hospital. The follow-up of 199 close contacts identified through contact tracing and vigilant surveillance did not result in detecting any other confirmed cases of MERS-CoV infection.
    Matched MeSH terms: Coronavirus Infections/drug therapy
  19. Rasul RM, Tamilarasi Muniandy M, Zakaria Z, Shah K, Chee CF, Dabbagh A, et al.
    Carbohydr Polym, 2020 Dec 15;250:116800.
    PMID: 33049807 DOI: 10.1016/j.carbpol.2020.116800
    Chitosan, as a biodegradable and biocompatible polymer, is characterized by anti-microbial and anti-cancer properties. It lately has received a widespread interest for use as the pulmonary particulate backbone materials of drug carrier for the treatment of infectious disease and cancer. The success of chitosan as pulmonary particulate drug carrier is a critical interplay of their mucoadhesive, permeation enhancement and site/cell-specific attributes. In the case of nanocarriers, various microencapsulation and micro-nano blending systems have been devised to equip them with an appropriate aerodynamic character to enable efficient pulmonary aerosolization and inhalation. The late COVID-19 infection is met with acute respiratory distress syndrome and cancer. Chitosan and its derivatives are found useful in combating HCoV and cancer as a function of their molecular weight, substituent type and its degree of substitution. The interest in chitosan is expected to rise in the next decade from the perspectives of drug delivery in combination with its therapeutic performance.
    Matched MeSH terms: Coronavirus Infections/drug therapy
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links