Displaying publications 1 - 20 of 152 in total

Abstract:
Sort:
  1. Nasser IM, Ibrahim MHW, Zuki SSM, Algaifi HA, Alshalif AF
    Environ Sci Pollut Res Int, 2022 Mar;29(11):15318-15336.
    PMID: 34982380 DOI: 10.1007/s11356-021-18310-8
    Exposing concrete to high temperatures leads to harmful effects in its mechanical and microstructural properties, and ultimately to total failure. In this sense, various types of waste materials are exploited not only to tackle serious environmental issues but also to enhance the thermal stability of concrete exposed to elevated temperatures. Furthermore, nanomaterials have been incorporated in concrete as admixtures to reduce the thermal degradation of concrete due to exposure to high temperatures. In the present study, the effects of nanosilica (NS) incorporation on the properties of concrete subjected to elevated temperature are discussed in several sequential sections. The process mechanism of concrete deterioration due to fire exposure and the important factors that could affect the performance of concrete under fire were evaluated. Moreover, brief highlights on the effect of elevated temperature on concrete containing waste materials are included in this review paper. Reviews and summaries of the available and updated literature regarding concrete containing NS are considered. According to the findings of the studies under review, the addition of nanosilica to concrete contributed in reduced strength loss, minimized internal porosity, and enhanced matrix compactness in concrete.
    Matched MeSH terms: Construction Materials*
  2. Mashaan NS, Karim MR, Abdel Aziz M, Ibrahim MR, Katman HY, Koting S
    ScientificWorldJournal, 2014;2014:968075.
    PMID: 25050406 DOI: 10.1155/2014/968075
    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.
    Matched MeSH terms: Construction Materials*
  3. Imran HM, Akib S, Karim MR
    Environ Technol, 2013 Sep-Oct;34(17-20):2649-56.
    PMID: 24527626
    Uncontrolled stormwater runoff not only creates drainage problems and flash floods but also presents a considerable threat to water quality and the environment. These problems can, to a large extent, be reduced by a type of stormwater management approach employing permeable pavement systems (PPS) in urban, industrial and commercial areas, where frequent problems are caused by intense undrained stormwater. PPS could be an efficient solution for sustainable drainage systems, and control water security as well as renewable energy in certain cases. Considerable research has been conducted on the function of PPS and their improvement to ensure sustainable drainage systems and water quality. This paper presents a review of the use of permeable pavement for different purposes. The paper focuses on drainage systems and stormwater runoff quality from roads, driveways, rooftops and parking lots. PPS are very effective for stormwater management and water reuse. Moreover, geotextiles provide additional facilities to reduce the pollutants from infiltrate runoff into the ground, creating a suitable environment for the biodegradation process. Furthermore, recently, ground source heat pumps and PPS have been found to be an excellent combination for sustainable renewable energy. In addition, this study has identified several gaps in the present state of knowledge on PPS and indicates some research needs for future consideration.
    Matched MeSH terms: Construction Materials/analysis
  4. Mehdizadeh H, Jia X, Mo KH, Ling TC
    Environ Pollut, 2021 Jul 01;280:116914.
    PMID: 33774540 DOI: 10.1016/j.envpol.2021.116914
    Recently, the use of accelerated carbonation curing has attracted wide attention as a promising method to reduce carbon dioxide (CO2) emission and improve the mechanical properties of cement-based materials. However, the diffusion mechanism of CO2 in the matrix and the content of hydration products are the key factors that restrict the carbonation reaction rate. To understand the combined behavior of hydration and carbonation reactions, this paper investigates the influence of cement hydration induced by water-to-cement ratio (w/c) (ranging from 0.25 to 0.45) on microstructure and microhardness properties of cement paste. The experimental results demonstrated that carbonation only occurred at the surface layer of cement paste samples and carbonation efficiency was significantly influenced by greater hydration due to higher w/c. The carbonation depth of the sample with 0.45 w/c was about 6 times higher than that of sample with 0.25 w/c after 28 days of CO2 curing. XRD results revealed that calcite-type calcium carbonate is the main carbonation product and consumption of clinker phases (C2S and C3S) during the hydration enhanced the calcite precipitation in the pores of the surface layer. According to FTIR, with increasing w/c, the position of Si-O-Si stretching bond of the carbonated surface changed from Q2 to Q3, confirming the formation of amorphous silica-rich gel, along with the appearance of CO32- bonds related to calcite. In overall, the micro-mechanical analysis in this study showed that the carbonation significantly improved the surface microhardness of cement paste samples, while the refinement of capillary pores due to carbonation also decreased the negative impact of large pores formed in the matrix of cement paste prepared with high w/c.
    Matched MeSH terms: Construction Materials*
  5. Jiang Y, Ling TC, Mo KH, Shi C
    J Environ Manage, 2019 Jul 15;242:440-449.
    PMID: 31071620 DOI: 10.1016/j.jenvman.2019.04.098
    In light of concerns relating to improper waste disposal and resources preservation, reclamation of the discarded glass in construction materials had been extensively carried out since 1963. In the past decade, although more than 100 papers associated with the use of glass powder (GP) in the micron level scale were published, comprehensive review of all practical applications in cement-based materials and construction products is not available. This paper therefore provides a summary of the body of knowledge on the interaction and effects of using GP in cement-based and extended construction materials. This review concludes that GP is an innovative and promising eco-supplementary cementitious material. Beyond that, use of GP is demonstrated to be potentially beneficial as a precursor in geopolymer and suitable for manufacturing eco-cement, artificial lightweight aggregate and composite phase change material. The multiple applications of GP are seen as an important step towards waste glass recycling as a sustainable construction material and for the overall betterment of the industry.
    Matched MeSH terms: Construction Materials*
  6. Milad A, Babalghaith AM, Al-Sabaeei AM, Dulaimi A, Ali A, Reddy SS, et al.
    Int J Environ Res Public Health, 2022 Nov 11;19(22).
    PMID: 36429580 DOI: 10.3390/ijerph192214863
    The environmental concerns of global warming and energy consumption are among the most severe issues and challenges facing human beings worldwide. Due to the relatively higher predicted temperatures (150-180 °C), the latest research on pavement energy consumption and carbon dioxide (CO2) emission assessment mentioned contributing to higher environmental burdens such as air pollution and global warming. However, warm-mix asphalt (WMA) was introduced by pavement researchers and the road construction industry instead of hot-mix asphalt (HMA) to reduce these environmental problems. This study aims to provide a comparative overview of WMA and HMA from environmental and economic perspectives in order to highlight the challenges, motivations, and research gaps in using WMA technology compared to HMA. It was discovered that the lower production temperature of WMA could significantly reduce the emissions of gases and fumes and thus reduce global warming. The lower production temperature also provides a healthy work environment and reduces exposure to fumes. Replacing HMA with WMA can reduce production costs because of the 20-75% lower energy consumption in WMA production. It was also released that the reduction in energy consumption is dependent on the fuel type, energy source, material heat capacity, moisture content, and production temperature. Other benefits of using WMA are enhanced asphalt mixture workability and compaction because the additives in WMA reduce asphalt binder viscosity. It also allows for the incorporation of more waste materials, such as reclaimed asphalt pavement (RAP). However, future studies are recommended on the possibility of using renewable, environmentally friendly, and cost-effective materials such as biomaterials as an alternative to conventional WMA-additives for more sustainable and green asphalt pavements.
    Matched MeSH terms: Construction Materials*
  7. Putra MA, Teh KC, Tan J, Choong TSY
    Environ Sci Pollut Res Int, 2020 Aug;27(23):29352-29360.
    PMID: 32440875 DOI: 10.1007/s11356-020-09207-z
    Cement is a vital material used in the construction of concrete buildings. World annual cement demand is increasing rapidly along with the improvement in infrastructure development. However, cement manufacturing industries are facing challenges in reducing the environmental impacts of cement production. To resolve this issue, a suitable methodology is crucial to ensure the selected processes are effective and efficient and at the same time environmentally friendly. Different technologies and equipment have potential to produce variations in operational effectiveness, environmental impacts, and manufacturing costs in cement manufacturing industries. Therefore, this work aims to present the sustainability assessment of cement plants by taking into consideration of environmental, social, and economic impacts. Three cement production plants located in Western Indonesian are used as case studies where social impact and environmental impact are evaluated via life cycle assessment (LCA) model. This model is integrated with analytic hierarchy process (AHP), a multi-criteria decision analysis tool in selecting the most sustainable cement manufacturing plant.
    Matched MeSH terms: Construction Materials*
  8. Balasbaneh AT, Sher W, Yeoh D, Yasin MN
    Environ Sci Pollut Res Int, 2023 Feb;30(10):26964-26981.
    PMID: 36374387 DOI: 10.1007/s11356-022-24079-1
    The embodied carbon of building materials and the energy consumed during construction have a significant impact on the environmental credentials of buildings. The structural systems of a building present opportunities to reduce environmental emissions and energy. In this regard, mass timber materials have considerable potential as sustainable materials over other alternatives such as steel and concrete. The aim of this investigation was to compare the environment impact, energy consumption, and life cycle cost (LCC) of different wood-based materials in identical single-story residential buildings. The materials compared are laminated veneer lumber (LVL) and glued laminated timber (GLT). GLT has less global warming potential (GWP), ozone layer depletion (OLD), and land use (LU), respectively, by 29%, 37%, and 35% than LVL. Conversely, LVL generally has lower terrestrial acidification potential (TAP), human toxicity potential (HTP), and fossil depletion potential (FDP), respectively, by 30%, 17%, and 27%. The comparative outcomes revealed that using LVL reduces embodied energy by 41%. To identify which of these materials is the best alternative, various environmental categories, embodied energy, and cost criteria require further analysis. Therefore, the multi-criteria decision-making (MCDM) method has been applied to enable robust decision-making. The outcome showed that LVL manufacturing using softwood presents the most sustainable choice. These research findings contribute to the body of knowledge about the use of mass timber in construction.
    Matched MeSH terms: Construction Materials*
  9. Lai VY, Hejazi F, Saleem S
    PLoS One, 2020;15(11):e0238654.
    PMID: 33147216 DOI: 10.1371/journal.pone.0238654
    Towers are important structures for installing radio equipment to emit electromagnetic waves that allow radio, television and/or mobile communications to function. Feasibility, cost, and speed of the construction are considered in the design process as well as providing stability and functionality for the communication tower. This study proposes the new design for construction of segmental tubular section communication tower with ultra-high-performance fibre concrete (UHPFC) material and prestress tendon to gain durability, ductility, and strength. The proposed mix design for UHPFC in this study which used for construction of communication tower is consisted of densified Silica Fume, Silica fine and coarse Sand and hooked-ends Steel Fiber. The prestressed tendon is used in the tower body to provide sufficient strength against the lateral load. The proposed design allows the tower to be built with three precast segments that are connected using bolts and nuts. This paper presents a novel method of construction and installation of the communication tower. The advantages of proposed design and construction process include rapid casting of the precast segment for the tower and efficient installation of segments in the project. The use of UHPFC material with high strength and prestress tendon can reduce the size and thickness of the tower as well as the cost of construction. Notably, this material can also facilitate the construction and installation procedure.
    Matched MeSH terms: Construction Materials*
  10. Zhao QQ, Chen MY, He RL, Zhang ZF, Ashraf MA
    Saudi J Biol Sci, 2016 Jan;23(1):S137-41.
    PMID: 26858558 DOI: 10.1016/j.sjbs.2015.08.010
    This review summarizes the research on timber construction materials used in bridge construction. It focuses on the application of antiseptic treatments and the use of timber engineering materials in decks and bridges. This review also provides an overview on the future research and prospects of engineered timber materials.
    Matched MeSH terms: Construction Materials
  11. Phillip E, Khoo KS, Yusof MAW, Abdel Rahman RO
    J Environ Manage, 2021 Feb 15;280:111703.
    PMID: 33288318 DOI: 10.1016/j.jenvman.2020.111703
    Disused Sealed Radioactive Sources (DSRS) borehole disposal is an innovative concept recommended by international atomic energy agency (IAEA) to improve the safety and security of the management end point for these sources. A green application of Palm Oil Fuel Ash (POFA) as a supplementary material for cementitious backfill barrier in DSRS borehole disposal facility is proposed. Samples with up to 50% POFA replacement complied with the mechanical and hydraulic performance requirements for backfill barriers in retrievable radioactive waste disposal facilities. The structures of one year old OPC and optimum OPC-POFA cement backfills were evaluated using FESEM, XRD, EDXRF, BET, and TGA and their 226 Ra confinement performances were assessed. 30% POFA replacement improved the geochemical conditions by reducing competitive Ca2+ release into the disposal environment. It enhanced 226Ra confinement performance independently on the amount of water intrusion or releases below 2% of 1 Ci source. The improved performance is attributed to the higher fraction of active sites of OPC-POFA backfill compared to that of OPC backfill. 226Ra sorption onto C-S-H is irreversible, spontaneous, endothermic, and independent on the degree of the surface filling. The provided experimental data and theoretical analysis proved the feasibility of this green use of POFA in reducing the radiological hazard of 226Ra.
    Matched MeSH terms: Construction Materials
  12. Mocktar FA, Abdul Razab MKA, Mohamed Noor A
    Radiat Prot Dosimetry, 2020 Jul 07;189(1):69-75.
    PMID: 32090244 DOI: 10.1093/rpd/ncaa014
    This study aims to reduce radon gas emanations in the indoor environment by incorporating kenaf and oil palm nanocellulose that act as nano-fillers into building materials. Fabrication of composite brick was carried out according to the MS and ASTM standards. In this research, 40, 80, 120, 160 and 200 ml of nanocellulose were used to replace the usage of sand, stone and cement materials, respectively. Kenaf and oil palm nanocellulose were utilised to reduce the internal and surface porosity as well as to replace the radon resources (stone), which indirectly reduced radon gas emanation. Radon gas emanated from each composite brick was measured within 10 consecutive days in an airtight prototype Perspex room using Radon Monitor Sentinel 1030. A compression test was also carried out to investigate the physical strength of the fabricated composite bricks. The results showed that 40 ml of kenaf and oil palm nanocellulose was the optimum amount in reducing the radon concentration, where the radon readings were 1.4 and 0.93 pCi per l, respectively. Meanwhile, the brick with no nanocellulose exhibited the highest radon reading of 3.77 pCi per l. Moreover, the Young modulus for the composite brick of both kenaf and oil palm nanocellulose was 28.92 and 27.8 N per mm2 compared to the control brick, which was 27 N per mm2. The results proved that radon gas emanations were reduced by 62.86% for kenaf and 75.3% for oil palm by incorporating the organic nanocellulose, which has high potential towards a healthy indoor environment.
    Matched MeSH terms: Construction Materials
  13. Muhamad Samudi Yasir, Amran Ab Majid, Redzuwan Yahaya
    MyJurnal
    The main component of most building materials in Malaysia is rocks. These rocks have been found to naturally contain U-238, Th-232 and K-40. In order to estimate the radiological impact to the dweller, the level of radionuclides present in various building materials available in Malaysia were analyzed using gamma spectrometry. The radiation hazard indexes were calculated based on the above results. The results showed that the activity concentration of natural radionuclides U-238, Th-232, K-40 were between 19.0 Bq/kg – 42.2 Bq/kg, 16.5 Bq/kg –28.8 Bq/kg and 243.3 Bq/kg – 614.2 Bq/kg respectively. On the whole the radionuclides concentrations were still below the global average of 50 Bq/kg, 50 Bq/kg and 500 Bq/kg for U-238, Th-232 and K-40 respectively. The radiation hazard indexes of the building materials were also lower than the maximum value suggested.
    Matched MeSH terms: Construction Materials
  14. Yew MK, Bin Mahmud H, Ang BC, Yew MC
    ScientificWorldJournal, 2014;2014:387647.
    PMID: 24982946 DOI: 10.1155/2014/387647
    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3-5, 6-9, and 10-15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10-15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.
    Matched MeSH terms: Construction Materials*
  15. Khan SU, Nuruddin MF, Ayub T, Shafiq N
    ScientificWorldJournal, 2014;2014:986567.
    PMID: 24701196 DOI: 10.1155/2014/986567
    This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer.
    Matched MeSH terms: Construction Materials/analysis*
  16. Al Bakri Abdullah MM, Hussin K, Bnhussain M, Ismail KN, Yahya Z, Razak RA
    Int J Mol Sci, 2012;13(6):7186-98.
    PMID: 22837687 DOI: 10.3390/ijms13067186
    In this paper, we report the results of our investigation on the possibility of producing foam concrete by using a geopolymer system. Class C fly ash was mixed with an alkaline activator solution (a mixture of sodium silicate and NaOH), and foam was added to the geopolymeric mixture to produce lightweight concrete. The NaOH solution was prepared by dilute NaOH pellets with distilled water. The reactives were mixed to produce a homogeneous mixture, which was placed into a 50 mm mold and cured at two different curing temperatures (60 °C and room temperature), for 24 hours. After the curing process, the strengths of the samples were tested on days 1, 7, and 28. The water absorption, porosity, chemical composition, microstructure, XRD and FTIR analyses were studied. The results showed that the sample which was cured at 60 °C (LW2) produced the maximum compressive strength for all tests, (11.03 MPa, 17.59 MPa, and 18.19 MPa) for days 1, 7, and 28, respectively. Also, the water absorption and porosity of LW2 were reduced by 6.78% and 1.22% after 28 days, respectively. The SEM showed that the LW2 sample had a denser matrix than LW1. This was because LW2 was heat cured, which caused the geopolymerization rate to increase, producing a denser matrix. However for LW1, microcracks were present on the surface, which reduced the compressive strength and increased water absorption and porosity.
    Matched MeSH terms: Construction Materials*
  17. Liew AG, Idris A, Wong CH, Samad AA, Noor MJ, Baki AM
    Waste Manag Res, 2004 Aug;22(4):226-33.
    PMID: 15462329
    This study reports the use of sewage sludge generated from sewage treatment plant (STP) as raw material in a clay brick-making process. The physico-chemical and mineralogical characterization of the sewage sludge and clay were carried out in order to identify the major technological constraints and to define the sludge pretreatment requirements if necessary. Moreover, the effects on processing conditions and/or on changes of typical final characteristics are also evaluated. Bricks were produced with sewage sludge additions ranging from 10 to 40% by dry weight. The texture and finishing of the surface of sludge-amended clay bricks were rather poor. As for the physical and chemical properties, bricks with a sludge content of up to 40 wt.% were capable of meeting the relevant technical standards. However, bricks with more than 30 wt.% sludge addition are not recommended for use since they are brittle and easily broken even when handled gently. A tendency for a general degradation of brick properties with sludge additions was observed due to its refractory nature. Therefore, sludge bricks of this nature are only suitable for use as common bricks, which are normally not exposed to view, because of poor surface finishing.
    Matched MeSH terms: Construction Materials*
  18. Kumar A, Bheel N, Ahmed I, Rizvi SH, Kumar R, Jhatial AA
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1210-1222.
    PMID: 34350574 DOI: 10.1007/s11356-021-15734-0
    The production of cement releases an enormous amount of CO2 into the environment. Besides, industrial wastes like silica fume and fly ash need effective utilization to reduce their impacts on the environment. This research aims to explore the influence of silica fume (SF) and fly ash (FA) individually and combine them as binary cementitious material (BCM) on the hardened properties and embodied carbon of roller compacted concrete (RCC). A total of ten mixes were prepared with 1:2:4 mix ratio at the different water-cement ratios to keep the zero slump of roller compacted concrete. However, the replacement proportions for SF were 5%-15%, and FA were 5%-15% by the weight of cement individually and combine in roller compacted concrete for determining the hardened properties and embodied carbon. In this regard, several numbers of concrete specimens (cubes and cylinders) were cast and cured for 7 and 28 days correspondingly. It was observed that the compressive strength of RCC is boosted by 33.6 MPa and 30.6 MPa while using 10% of cement replaced with SF and FA individually at 28 days, respectively. Similarly, the splitting tensile strength of RCC is enhanced by 3.5 MPa at 10% cement replaced with SF and FA on 28 days, respectively. The compressive and splitting tensile strength of RCC is increased by 34.2 MPa and 3.8 MPa at SF7.5FA7.5 as BCM after 28 days consistently. In addition, the water absorption of RCC decreased while using SF and FA as cementitious material individually and together at 28 days. Besides, the embodied carbon of RCC decreased with increasing the replacement level of SF and FA by the mass of cement individually and combined.
    Matched MeSH terms: Construction Materials*
  19. Bheel N, Aluko OG, Khoso AR
    Environ Sci Pollut Res Int, 2022 Apr;29(18):27399-27410.
    PMID: 34982384 DOI: 10.1007/s11356-021-18455-6
    The quest for eco-sustainable binders like agro-wastes in concrete to reduce the carbon footprint caused by cement production has been ongoing among researchers recently. The application of agro-waste-based cementitious materials in binary concrete has been said to improve concrete performance lately. Coconut and groundnut shells are available in abundant quantities and disposed of as waste in many world regions. Therefore, the use of coconut shell ash (CSA) and groundnut shell ash (GSA) in a ternary blend provides synergistic benefits with Portland cement (PC) and may be sustainably utilized in concrete as ternary cementitious material (TCM). Therefore, this study presents concrete performance with CSA and GSA in a grade 30 ternary concrete. Two hundred ten numbers of standard concrete samples were cast for checking the fresh and mechanical properties of concrete at curing ages of 7, 28, and 90 days. After 28-day curing, the experimental results show an increment in compressive, tensile, and flexural strength by 11.62%, 8.39%, and 9.46% at 10% TCM cement replacement, respectively. The concrete density and permeability coefficient reduce as TCM's content increases. The modulus of elasticity after 90 days improved with the addition of TCM. The concrete's sustainability assessment indicated that the emitted carbon for concrete decreased by around 16% using 20% TCM in concrete. However, the workability of fresh concrete declines as TCM content increases.
    Matched MeSH terms: Construction Materials*
  20. Shah SN, Tan TH, Tey OW, Leong GW, Chin YS, Yuen CW, et al.
    Sci Prog, 2022;105(2):368504221091186.
    PMID: 35379044 DOI: 10.1177/00368504221091186
    Lightweight cementitious composite (LCC) produced by incorporating lightweight silica aerogel was explored in this study. Silica aerogel was incorporated as 60% replacement of fine aggregate (sand/crushed glass) in producing the LCC. The effect of aerogel on the drying shrinkage and alkali-silica expansion of LCC was evaluated and compared with those of lightweight expanded perlite aggregate. At the density of 1600  ±  100 kg/m3, the aerogel/ expanded perlite LCC had attained compressive strength of about 17/24 MPa and 22/26 MPa in mixtures with sand and crushed glass as a fine aggregate, respectively. The inclusion of aerogel and expanded perlite increased the drying shrinkage. The drying shrinkage of aerogel LCC was up to about 3 times of the control mixtures. Although the presence of aerogel and expanded perlite could reduce the alkali-silica expansion when partially replacing crushed glass, the aerogel-glass LCC still recorded expansion exceeding the maximum limit of 0.10% at 14 days. However, when 15% cement was replaced with fly ash and granulated blast furnace slag, the alkali-silica expansion was reduced to 0.03% and 0.10%, respectively. Microstructural observations also revealed that the aerogel with fly ash can help in reducing the alkali-silica expansion in mixes containing the reactive crushed glass aggregate.
    Matched MeSH terms: Construction Materials*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links