Energy efficiency (EE) is an evolving research aspect for researchers, businesses, and policymakers for its undeniable role in meeting increasing energy demand, reducing CO2 emissions, and tackling climate change. This paper provides a review of the current state of EE research by mapping the research landscape in business and economics to understand the socioeconomic dimensions within these research areas. To identify key information, we examine the trends and characteristics of 2935 relevant scientific publications over a 30-year period from 1990 to 2019 in the Social Science Citation Index of the Web of Science database using bibliometric analysis with a R language package called 'bibliometrix'. Our analysis shows an increasing trend in publications from 2006 onwards; the period remarkably coincides with the implementation phase of the Kyoto protocol in 2005. Accordingly, we observe that EE research has a strong association with issues like CO2 emissions, climate change, sustainability, and the growing importance of these issues in recent years. Thus, our findings provide crucial understandings by incorporating a wide array of scientific outputs in response to calls for greater theoretical clarification of EE research. These findings provide insights into the current state of the art of, and identify crucial areas for future, research. Hence, our research assists in formulating environmentally sustainable policies to tackle the adverse effects of CO2 emissions and related climate change through providing critical grasps on the scholarly development related to EE.
Matched MeSH terms: Conservation of Energy Resources*
In a time of climate change, critically contributed by the increased global energy consumption, energy efficiency comes out as a critical factor in achieving sustainable growth for the countries. Given the fast economic advancement in the BRICS (Brazil, Russia, India, China, and South Africa) countries that have played a vital role in the global economy, energy usage, and climate governance, this study investigates the role of energy efficiency on the environmental quality of these countries. We proxy environmental quality with CO2 emissions, incorporate renewable energy in our models, and estimate the relationship with a long-panel data of 29 years (1990-2018). Our dynamic heterogeneous panel model findings confirm that energy efficiency significantly reduces CO2 emissions or improves environmental quality in the long run and the short run. Besides, we find that renewable energy has a crucial role in enhancing environmental quality in the long run with the negative impact of economic growth activities. Our findings contribute to the literature in a novel way facilitating the comprehension of the role of energy efficiency using a wide range of sophisticated techniques, thus providing robust results. For the policymakers, we humbly advocate strategies for the clean and sustainable economic transition based on our findings which has notable implications for the BRICS, other developing economies, and the world as a whole.
Matched MeSH terms: Conservation of Energy Resources*
This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment.
Matched MeSH terms: Conservation of Energy Resources/economics*; Conservation of Energy Resources/methods
Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.
Matched MeSH terms: Conservation of Energy Resources/methods*; Conservation of Energy Resources/trends
This research predicted the effectiveness of variety game design elements in enhancing the intrinsic motivation of users on energy conservation behaviour prior to its actual implementation to ensure cost-effective. Face-to-face questionnaire surveys were conducted at the five recognized Malaysian research universities and obtained a total of 1500 valid survey data. The collected data was run with Structural Equation Modeling (SEM) analysis using SmartPLS 3 software. The results predicted the positive effect of gamification on intrinsically motivate the users based on Self-Determination Theory (SDT). The identified nine core game design elements were found to be useful in satisfying users' autonomy, competence and relatedness need satisfactions specified by SDT. This research is useful to guide the campaign organizer in designing a gamified design energy-saving campaign and provide understanding on the causal relationships between game design elements and users' intrinsic motivation to engage on energy conservation. A game-like campaign environment is believed to be created to users by implementing the game design elements in energy-saving campaign, and subsequently users' intrinsic motivation to engage on energy conservation behaviour can be enhanced.
Matched MeSH terms: Conservation of Energy Resources*
As an abundant and fast-growing biomass, bamboo can be used as construction materials owing to its desirable physical and mechanical properties, environmentally friendly features, and alternative to replace toxic and hazardous wastes in industrial processing. In this study, grid material made from bamboo (termed 'bamboo grid') was developed and compared to commercially used polyvinyl chloride (PVC) as packing material in cooling towers; PVC packing has drawbacks such as fouling, deposit buildup, low durability, and is harmful to environments. The cooling capacity, energy efficiency and environmental impact of bamboo grid packing were evaluated via life cycle assessment (LCA), particularly the cumulative energy demand (CED) and the Building for Environmental and Economic Sustainability (BEES). Although the thermal performance of the PVC packing was found higher than that of the bamboo grid packing, the bamboo grid packing showed improved resistance characteristic, recording a total saving of 529.2 tons of standard coal during a six-month field test in a real thermal power generation plant. LCA results revealed that the utilization of bamboo-grid packing to replace PVC packing in cooling towers reduced total CED from 3420 MJ to 561 MJ per functional unit, achieving 6 times reduction. A desirable reduction ranging from 1.5 to 10.5 times was also recorded for the BEES indices. This LCA comparison analysis confirmed the improvement of energy efficiency and reduction of environmental impact by using the bamboo grid to replace PVC as packing material in cooling towers. The major environmental impact (BEES) indices (e.g., the total Global warming potential, Acidification, Eutrophication and Smog) were reduced by 1.5-10.5 times via the use of bamboo grid. The results demonstrate that bamboo grid packing is a good alternative to replace existing grid packing materials such as concrete and PVC that are harmful to human health and environments.
Matched MeSH terms: Conservation of Energy Resources*
Dumps of a mining-metallurgical complex of post-Soviet Republics have accumulated a huge amount of technogenic waste products. Out of them, Kazakhstan alone has preserved about 20 billion tons. In the field of technogenic waste treatment, there is still no technical solution that leads it to be a profitable process. Recent global trends prompted scientists to focus on developing energy-saving and a highly efficient melting unit that can significantly reduce specific fuel consumption. This paper reports, the development of a new technological method-smelt layer of inversion phase. The introducing method is characterized by a combination of ideal stirring and ideal displacement regimes. Using the method of affine modelling, recalculation of pilot plant's test results on industrial sample has been obtained. Experiments show that in comparison with bubbling and boiling layers of smelt, the degree of zinc recovery increases in the layer of inversion phase. That indicates the reduction of the possibility of new formation of zinc silicates and ferrites from recombined molecules of ZnO, SiO2, and Fe2O3. Calculations show that in industrial samples of the pilot plant, the consumption of natural gas has reduced approximately by two times in comparison with fuming-furnace. The specific fuel consumption has reduced by approximately four times in comparison with Waelz-kiln.
Matched MeSH terms: Conservation of Energy Resources*
The demand for primary energy resources has increased significantly due to the rapid growth of the global economy and increasing greenhouse gas (GHG) emissions. Therefore, improving energy efficiency levels is essential for global energy, energy security, and environmental sustainability. In the context of the Asia-Pacific region, the study of energy efficiency among different countries can play a role in better energy utilization. These countries also provide a policy for the Asia-Pacific region to improve its energy utilization. This study's primary focus is to investigate the optimal efficiency score of 15 areas of the Asia-Pacific region, and the analysis is based on super-efficiency (radical) and super slacks-based measure (SBM) data in a nonparametric DEA model. Three areas in the Asia-Pacific are selected for energy efficiency measures: South Asia, East Asia, and Australasia. The results suggest that Bangladesh, Pakistan, China, Singapore, New Zealand, the Philippines, Japan, India, Indonesia, Malaysia, Thailand, and Vietnam obtain the most efficient score of 1 in both DEA models throughout the study period. Australia and Sri Lanka receive a low score during all study periods, while Hong Kong does not have data for all study years. The results of the study will help improve energy performance, cost-effectiveness, and environmental sustainability, increasing the competitiveness and scalability of efficient energy sources.
Matched MeSH terms: Conservation of Energy Resources*
This paper empirically investigates the impact of overall sustainability reporting as well as its components (economic, environmental, and social sustainability reporting) on the cost of debt and equity capital for Malaysian oil and gas companies. The data was collected from 41 publicly listed oil and gas companies in Malaysia for the period from 2008 to 2017. Qualitative information was gathered for sustainability reporting and then converted into quantitative form by assigning weights according to the extent of reporting. The cost of capital information was sourced through Thomson Reuters Datastream. Panel data analysis was employed using generalized least square (GLS) random effects regression to examine the relationship between sustainability reporting and cost of capital. Firm reputation, size, and profitability were included as control variables. The findings indicate that overall sustainability reporting and one component, economic sustainability reporting, reduce both cost of debt and cost of equity. However, environmental sustainability reporting reduces only the cost of debt but does not reduce the cost of equity. Social sustainability reporting shows no effect on the cost of debt or equity. The findings of this paper should be useful for regulators, legislators, shareholders, creditors, and practitioners in pursuing sustainability practices that not only improve economic and environmental performance but also enhance overall performance by reducing the cost of capital. The results of the paper highlight that companies investing in sustainability can generate positive value through the enhancement of reputational capital. This study is the first to empirically investigate the relationship between overall sustainability reporting, including its three components, and the cost of both debt and equity capital.
Matched MeSH terms: Conservation of Energy Resources*
Cost and safety are critical factors in the oil and gas industry for optimizing wellbore trajectory, which is a constrained and nonlinear optimization problem. In this work, the wellbore trajectory is optimized using the true measured depth, well profile energy, and torque. Numerous metaheuristic algorithms were employed to optimize these objectives by tuning 17 constrained variables, with notable drawbacks including decreased exploitation/exploration capability, local optima trapping, non-uniform distribution of non-dominated solutions, and inability to track isolated minima. The purpose of this work is to propose a modified multi-objective cellular spotted hyena algorithm (MOCSHOPSO) for optimizing true measured depth, well profile energy, and torque. To overcome the aforementioned difficulties, the modification incorporates cellular automata (CA) and particle swarm optimization (PSO). By adding CA, the SHO's exploration phase is enhanced, and the SHO's hunting mechanisms are modified with PSO's velocity update property. Several geophysical and operational constraints have been utilized during trajectory optimization and data has been collected from the Gulf of Suez oil field. The proposed algorithm was compared with the standard methods (MOCPSO, MOSHO, MOCGWO) and observed significant improvements in terms of better distribution of non-dominated solutions, better-searching capability, a minimum number of isolated minima, and better Pareto optimal front. These significant improvements were validated by analysing the algorithms in terms of some statistical analysis, such as IGD, MS, SP, and ER. The proposed algorithm has obtained the lowest values in IGD, SP and ER, on the other side highest values in MS. Finally, an adaptive neighbourhood mechanism has been proposed which showed better performance than the fixed neighbourhood topology such as L5, L9, C9, C13, C21, and C25. Hopefully, this newly proposed modified algorithm will pave the way for better wellbore trajectory optimization.
Matched MeSH terms: Conservation of Energy Resources/methods*
The determinants of environmental degradation have been investigated many times by utilizing carbon dioxide emissions and/or ecological footprint. However, these traditional environmental degradation indicators do not consider the supply side of environmental problems. Therefore, this study focuses on the dynamic influence of financial development, energy efficiency, economic growth, and technological innovation on environmental degradation in India through the load capacity factor, including both the supply and demand sides of environmental problems. For that purpose, the recently developed dynamically simulated autoregressive distributed lag (ARDL) method is employed using the annual time-series data extending from 1980-2020. The dynamically simulated ARDL results demonstrate that financial development, economic growth, and technological innovation have a dynamic adverse impact on the load capacity factor, whereas energy efficiency has a positive dynamic influence on environmental quality. In addition, the results support the validity of the environmental Kuznets curve hypothesis as the negative effect of economic growth on environmental quality decreases over time. Based on the study findings, policy recommendations are provided for India. Finally, this study utilizing load capacity factor as an indicator for environmental quality will provide new topics in exploring the determinants of environmental degradation.
Matched MeSH terms: Conservation of Energy Resources*
This study measures the energy rebound effects of Chinese energy and coal power use in Chinese energy-intensive industries by using latent class stochastic frontier models like LMDI, and other various econometric estimation approach for coal-supplying regions in China ranging between 1992 and 2018. The findings reveals that China's coal sector's average capacity consumption is 0.81%, with a pattern of first increasing and then decreasing, falling to 0.68% in 2016 specifically. The coal capacity operation rate concerning low as well as depleted regions is generally strong, with limited space for expansion. In 2015 and 2016, the utilization rate of coal production potential in moderate-producing areas fell about 42%. Economic development variables affect the capacity utilization levels of moderate, weak, and depleted generating regions. At the same time, the price volatility cannot induce a practical improvement in the ability utilization rate, which means that China's coal industry is mainly un-marketized. China's energy efficiency increased about 19.98% among 2000 and 2016, while the rapidest expansion pattern has been noted in the eastern province at 39.86%, next to central (11.71%) and western regions (9.59%). The take back impact via the renewable energy and renewable productivity channels is estimated as 12.34% and 25.40%, respectively. Therefore, the take back impact is of significant importance regarding energy preservation, as China's cumulative renewable energy use is equal to China's aggregate energy use. On such findings, recent research also contributed by presenting novel policy implications for key stakeholders.
Matched MeSH terms: Conservation of Energy Resources*
The International Maritime Organization has set a goal to achieve a 50% reduction of total annual greenhouse gas emission related to the international shipping by 2050 compared to the 2008 baseline emissions. Malaysia government has taken an initiative to investigate the assessment (cost-effectiveness) of this International Maritime Organization's short-term measure on Malaysian-registered domestic ships although this measure is only for international merchant ship. To achieve this, this paper collected the ship's data from the shipowners from 25 sample ships. Engine power limitation is the most cost-effective option, but low power limits can lead to substantially increased sailing times. Based on cost-efficiency analysis, it creates for the purpose of compliance with the operational carbon intensity indicator. It found that even if it is possible to bring an asset back into service, it may not be possible to do so in a manner that generates a profit or complies with applicable regulations. In these situations, it may be more prudent to scrap the asset rather than run the risk of having it become a stranded asset. This is especially true for older tankers. Alternatives with lengthy payback periods are not desirable for the domestic tanker fleet that is already in operation.
Matched MeSH terms: Conservation of Energy Resources
Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m(2)/year, but can theoretically be reduced to 40.19 kWh/mm(2)/year.
Matched MeSH terms: Conservation of Energy Resources/economics*
Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers.
Matched MeSH terms: Conservation of Energy Resources/methods
Oil palm is widely grown in Malaysia. Palm oil has attracted the attention of researchers to develop an 'environmentally friendly' and high quality fuel, free of nitrogen and sulfur. In the present study, the catalytic cracking of palm oil to biofuel was studied over REY catalyst in a transport riser reactor at atmospheric pressure. The effect of reaction temperature (400-500 degrees C), catalyst/palm oil ratio (5-10) and residence time (10-30s) was studied over the yield of bio-gasoline and gas as fuel. Design of experiments was used to study the effect of operating variables over conversion of palm oil and yield of hydrocarbon fuel. The response surface methodology was used to determine the optimum value of the operating variables for maximum yield of bio-gasoline fraction in the liquid product obtained.
Matched MeSH terms: Conservation of Energy Resources/methods*
This study analyzes the relationship between globalization, energy consumption, and economic growth among selected South Asian countries to promote the green economy and environment. This study also finds causal association between energy growth and nexus of CO2 emissions and employed the premises of the EKC framework. The study used annual time series analysis, starting from 1985 to 2019. The data set has been collected from the World Development Indicator (WDI). The result of a fully modified ordinary least square (FMOLS) method describes a significantly worse quality environment in the South Asian region. The individual country as Bangladesh shows a positively significant impact on the CO2 emissions and destroys the level of environment regarding non-renewable energy and globalization index. However, negative and positive growth levels (GDP) and square of GDP confirm the EKC hypothesis in this region. This study has identified the causality between GDP growth and carbon emission and found bidirectional causality between economic growth and energy use.
Matched MeSH terms: Conservation of Energy Resources
Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.
Matched MeSH terms: Conservation of Energy Resources