Displaying publications 1 - 20 of 340 in total

Abstract:
Sort:
  1. Işık EB, Brazas MD, Schwartz R, Gaeta B, Palagi PM, van Gelder CWG, et al.
    Nat Biotechnol, 2023 Aug;41(8):1171-1174.
    PMID: 37568018 DOI: 10.1038/s41587-023-01891-9
    Matched MeSH terms: Computational Biology*
  2. Wei GW, Soares TA, Wahab H, Wang R
    J Chem Inf Model, 2021 02 22;61(2):547.
    PMID: 33529020 DOI: 10.1021/acs.jcim.1c00081
    Matched MeSH terms: Computational Biology*
  3. Leow CY, Chuah C, Abdul Majeed AB, Mohd Nor N, Leow CH
    Methods Mol Biol, 2022;2414:17-35.
    PMID: 34784029 DOI: 10.1007/978-1-0716-1900-1_2
    Reverse vaccinology (RV) was first introduced by Rappuoli for the development of an effective vaccine against serogroup B Neisseria meningitidis (MenB). With the advances in next generation sequencing technologies, the amount of genomic data has risen exponentially. Since then, the RV approach has widely been used to discover potential vaccine protein targets by screening whole genome sequences of pathogens using a combination of sophisticated computational algorithms and bioinformatic tools. In contrast to conventional vaccine development strategies, RV offers a novel method to facilitate rapid vaccine design and reduces reliance on the traditional, relatively tedious, and labor-intensive approach based on Pasteur"s principles of isolating, inactivating, and injecting the causative agent of an infectious disease. Advances in biocomputational techniques have remarkably increased the significance for the rapid identification of the proteins that are secreted or expressed on the surface of pathogens. Immunogenic proteins which are able to induce the immune response in the hosts can be predicted based on the immune epitopes present within the protein sequence. To date, RV has successfully been applied to develop vaccines against a variety of infectious pathogens. In this chapter, we apply a pipeline of bioinformatic programs for identification of Shigella flexneri potential vaccine candidates as an illustration immunoinformatic tools available for RV.
    Matched MeSH terms: Computational Biology
  4. Iqbal MJ, Faye I, Samir BB, Said AM
    ScientificWorldJournal, 2014;2014:173869.
    PMID: 25045727 DOI: 10.1155/2014/173869
    Bioinformatics has been an emerging area of research for the last three decades. The ultimate aims of bioinformatics were to store and manage the biological data, and develop and analyze computational tools to enhance their understanding. The size of data accumulated under various sequencing projects is increasing exponentially, which presents difficulties for the experimental methods. To reduce the gap between newly sequenced protein and proteins with known functions, many computational techniques involving classification and clustering algorithms were proposed in the past. The classification of protein sequences into existing superfamilies is helpful in predicting the structure and function of large amount of newly discovered proteins. The existing classification results are unsatisfactory due to a huge size of features obtained through various feature encoding methods. In this work, a statistical metric-based feature selection technique has been proposed in order to reduce the size of the extracted feature vector. The proposed method of protein classification shows significant improvement in terms of performance measure metrics: accuracy, sensitivity, specificity, recall, F-measure, and so forth.
    Matched MeSH terms: Computational Biology/methods*
  5. Sharmila Karim, Zurni Omar, Haslinda Ibrahim, Khairil Iskandar Othman, Mohamed Suleiman
    MyJurnal
    Linear array of permutations is hard to be factorised. However, by using a starter set, the process of listing the permutations becomes easy. Once the starter sets are obtained, the circular and reverse of circular operations are easily employed to produce distinct permutations from each starter set. However, a problem arises when the equivalence starter sets generate similar permutations and, therefore, willneed to be discarded. In this paper, a new recursive strategy is proposed to generate starter sets that will not incur equivalence by circular operation. Computational advantages are presented that compare the results obtained by the new algorithm with those obtained using two other existing methods. The result indicates that the new algorithm is faster than the other two in time execution.
    Matched MeSH terms: Computational Biology
  6. Eng ZH, Abdullah MI, Ng KL, Abdul Aziz A, Arba'ie NH, Mat Rashid N, et al.
    Front Endocrinol (Lausanne), 2022;13:1039494.
    PMID: 36686473 DOI: 10.3389/fendo.2022.1039494
    BACKGROUND: Papillary thyroid cancer (PTC) is the most common thyroid malignancy. Concurrent presence of cytomorphological benign thyroid goitre (BTG) and PTC lesion is often detected. Aberrant protein profiles were previously reported in patients with and without BTG cytomorphological background. This study aimed to evaluate gene mutation profiles to further understand the molecular mechanism underlying BTG, PTC without BTG background and PTC with BTG background.

    METHODS: Patients were grouped according to the histopathological examination results: (i) BTG patients (n = 9), (ii) PTC patients without BTG background (PTCa, n = 8), and (iii) PTC patients with BTG background (PTCb, n = 5). Whole-exome sequencing (WES) was performed on genomic DNA extracted from thyroid tissue specimens. Nonsynonymous and splice-site variants with MAF of ≤ 1% in the 1000 Genomes Project were subjected to principal component analysis (PCA). PTC-specific SNVs were filtered against OncoKB and COSMIC while novel SNVs were screened through dbSNP and COSMIC databases. Functional impacts of the SNVs were predicted using PolyPhen-2 and SIFT. Protein-protein interaction (PPI) enrichment of the tumour-related genes was analysed using Metascape and MCODE algorithm.

    RESULTS: PCA plots showed distinctive SNV profiles among the three groups. OncoKB and COSMIC database screening identified 36 tumour-related genes including BRCA2 and FANCD2 in all groups. BRAF and 19 additional genes were found only in PTCa and PTCb. "Pathways in cancer", "DNA repair" and "Fanconi anaemia pathway" were among the top networks shared by all groups. However, signalling pathways related to tyrosine kinases were the most significantly enriched in PTCa while "Jak-STAT signalling pathway" and "Notch signalling pathway" were the only significantly enriched in PTCb. Ten SNVs were PTC-specific of which two were novel; DCTN1 c.2786C>G (p.Ala929Gly) and TRRAP c.8735G>C (p.Ser2912Thr). Four out of the ten SNVs were unique to PTCa.

    CONCLUSION: Distinctive gene mutation patterns detected in this study corroborated the previous protein profile findings. We hypothesised that the PTCa and PTCb subtypes differed in the underlying molecular mechanisms involving tyrosine kinase, Jak-STAT and Notch signalling pathways. The potential applications of the SNVs in differentiating the benign from the PTC subtypes requires further validation in a larger sample size.

    Matched MeSH terms: Computational Biology
  7. Ranganathan S, Eisenhaber F, Tong JC, Tan TW
    BMC Genomics, 2009;10 Suppl 3:S1.
    PMID: 19958472 DOI: 10.1186/1471-2164-10-S3-S1
    The 2009 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation dating back to 1998, was organized as the 8th International Conference on Bioinformatics (InCoB), Sept. 7-11, 2009 at Biopolis, Singapore. Besides bringing together scientists from the field of bioinformatics in this region, InCoB has actively engaged clinicians and researchers from the area of systems biology, to facilitate greater synergy between these two groups. InCoB2009 followed on from a series of successful annual events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea), New Delhi (India), Hong Kong and Taipei (Taiwan), with InCoB2010 scheduled to be held in Tokyo, Japan, Sept. 26-28, 2010. The Workshop on Education in Bioinformatics and Computational Biology (WEBCB) and symposia on Clinical Bioinformatics (CBAS), the Singapore Symposium on Computational Biology (SYMBIO) and training tutorials were scheduled prior to the scientific meeting, and provided ample opportunity for in-depth learning and special interest meetings for educators, clinicians and students. We provide a brief overview of the peer-reviewed bioinformatics manuscripts accepted for publication in this supplement, grouped into thematic areas. In order to facilitate scientific reproducibility and accountability, we have, for the first time, introduced minimum information criteria for our pubilcations, including compliance to a Minimum Information about a Bioinformatics Investigation (MIABi). As the regional research expertise in bioinformatics matures, we have delineated a minimum set of bioinformatics skills required for addressing the computational challenges of the "-omics" era.
    Matched MeSH terms: Computational Biology*
  8. Goh HH
    Adv Exp Med Biol, 2018 11 2;1102:69-80.
    PMID: 30382569 DOI: 10.1007/978-3-319-98758-3_5
    This chapter introduces different aspects of bioinformatics with a brief discussion in the systems biology context. Example applications in network pharmacology of traditional Chinese medicine, systems metabolic engineering, and plant genome-scale modelling are described. Lastly, this chapter concludes on how bioinformatics helps to integrate omics data derived from various studies described in previous chapters for a holistic understanding of secondary metabolite production in P. minus.
    Matched MeSH terms: Computational Biology*
  9. Xu J, Wang Y, Xu X, Cheng KK, Raftery D, Dong J
    Molecules, 2021 Sep 24;26(19).
    PMID: 34641330 DOI: 10.3390/molecules26195787
    In mass spectrometry (MS)-based metabolomics, missing values (NAs) may be due to different causes, including sample heterogeneity, ion suppression, spectral overlap, inappropriate data processing, and instrumental errors. Although a number of methodologies have been applied to handle NAs, NA imputation remains a challenging problem. Here, we propose a non-negative matrix factorization (NMF)-based method for NA imputation in MS-based metabolomics data, which makes use of both global and local information of the data. The proposed method was compared with three commonly used methods: k-nearest neighbors (kNN), random forest (RF), and outlier-robust (ORI) missing values imputation. These methods were evaluated from the perspectives of accuracy of imputation, retrieval of data structures, and rank of imputation superiority. The experimental results showed that the NMF-based method is well-adapted to various cases of data missingness and the presence of outliers in MS-based metabolic profiles. It outperformed kNN and ORI and showed results comparable with the RF method. Furthermore, the NMF method is more robust and less susceptible to outliers as compared with the RF method. The proposed NMF-based scheme may serve as an alternative NA imputation method which may facilitate biological interpretations of metabolomics data.
    Matched MeSH terms: Computational Biology/methods*
  10. Naseer S, Ali RF, Khan YD, Dominic PDD
    J Biomol Struct Dyn, 2022;40(22):11691-11704.
    PMID: 34396935 DOI: 10.1080/07391102.2021.1962738
    Lysine glutarylation is a post-translation modification which plays an important regulatory role in a variety of physiological and enzymatic processes including mitochondrial functions and metabolic processes both in eukaryotic and prokaryotic cells. This post-translational modification influences chromatin structure and thereby results in global regulation of transcription, defects in cell-cycle progression, DNA damage repair, and telomere silencing. To better understand the mechanism of lysine glutarylation, its identification in a protein is necessary, however, experimental methods are time-consuming and labor-intensive. Herein, we propose a new computational prediction approach to supplement experimental methods for identification of lysine glutarylation site prediction by deep neural networks and Chou's Pseudo Amino Acid Composition (PseAAC). We employed well-known deep neural networks for feature representation learning and classification of peptide sequences. Our approach opts raw pseudo amino acid compositions and obsoletes the need to separately perform costly and cumbersome feature extraction and selection. Among the developed deep learning-based predictors, the standard neural network-based predictor demonstrated highest scores in terms of accuracy and all other performance evaluation measures and outperforms majority of previously reported predictors without requiring expensive feature extraction process. iGluK-Deep:Computational Identification of lysine glutarylationsites using deep neural networks with general Pseudo Amino Acid Compositions Sheraz Naseer, Rao Faizan Ali, Yaser Daanial Khan, P.D.D DominicCommunicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Computational Biology/methods
  11. Choong YS, Mancera R, Lee VS
    Mol Biotechnol, 2024 Apr;66(4):567.
    PMID: 38337130 DOI: 10.1007/s12033-024-01073-1
    Matched MeSH terms: Computational Biology/methods
  12. Ranganathan S, Schönbach C, Nakai K, Tan TW
    BMC Genomics, 2010;11 Suppl 4:S1.
    PMID: 21143792 DOI: 10.1186/1471-2164-11-S4-S1
    The 2010 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation formed in 1998, was organized as the 9th International Conference on Bioinformatics (InCoB), Sept. 26-28, 2010 in Tokyo, Japan. Initially, APBioNet created InCoB as forum to foster bioinformatics in the Asia Pacific region. Given the growing importance of interdisciplinary research, InCoB2010 included topics targeting scientists in the fields of genomic medicine, immunology and chemoinformatics, supporting translational research. Peer-reviewed manuscripts that were accepted for publication in this supplement, represent key areas of research interests that have emerged in our region. We also highlight some of the current challenges bioinformatics is facing in the Asia Pacific region and conclude our report with the announcement of APBioNet's 100 BioDatabases (BioDB100) initiative. BioDB100 will comply with the database criteria set out earlier in our proposal for Minimum Information about a Bioinformatics and Investigation (MIABi), setting the standards for biocuration and bioinformatics research, on which we will report at the next InCoB, Nov. 27 - Dec. 2, 2011 at Kuala Lumpur, Malaysia.
    Matched MeSH terms: Computational Biology/methods; Computational Biology/trends*
  13. Lee Y, Roslan R, Azizan S, Firdaus-Raih M, Ramlan EI
    BMC Bioinformatics, 2016 Oct 28;17(1):438.
    PMID: 27793081
    BACKGROUND: Biological macromolecules (DNA, RNA and proteins) are capable of processing physical or chemical inputs to generate outputs that parallel conventional Boolean logical operators. However, the design of functional modules that will enable these macromolecules to operate as synthetic molecular computing devices is challenging.

    RESULTS: Using three simple heuristics, we designed RNA sensors that can mimic the function of a seven-segment display (SSD). Ten independent and orthogonal sensors representing the numerals 0 to 9 are designed and constructed. Each sensor has its own unique oligonucleotide binding site region that is activated uniquely by a specific input. Each operator was subjected to a stringent in silico filtering. Random sensors were selected and functionally validated via ribozyme self cleavage assays that were visualized via electrophoresis.

    CONCLUSIONS: By utilising simple permutation and randomisation in the sequence design phase, we have developed functional RNA sensors thus demonstrating that even the simplest of computational methods can greatly aid the design phase for constructing functional molecular devices.

    Matched MeSH terms: Computational Biology/instrumentation*; Computational Biology/methods*
  14. Ishaq M, Khan A, Su'ud MM, Alam MM, Bangash JI, Khan A
    Comput Math Methods Med, 2022;2022:8691646.
    PMID: 35126641 DOI: 10.1155/2022/8691646
    Task scheduling in parallel multiple sequence alignment (MSA) through improved dynamic programming optimization speeds up alignment processing. The increased importance of multiple matching sequences also needs the utilization of parallel processor systems. This dynamic algorithm proposes improved task scheduling in case of parallel MSA. Specifically, the alignment of several tertiary structured proteins is computationally complex than simple word-based MSA. Parallel task processing is computationally more efficient for protein-structured based superposition. The basic condition for the application of dynamic programming is also fulfilled, because the task scheduling problem has multiple possible solutions or options. Search space reduction for speedy processing of this algorithm is carried out through greedy strategy. Performance in terms of better results is ensured through computationally expensive recursive and iterative greedy approaches. Any optimal scheduling schemes show better performance in heterogeneous resources using CPU or GPU.
    Matched MeSH terms: Computational Biology/methods*; Computational Biology/statistics & numerical data
  15. Zeti AM, Shamsir MS, Tajul-Arifin K, Merican AF, Mohamed R, Nathan S, et al.
    PLoS Comput Biol, 2009 Aug;5(8):e1000457.
    PMID: 19714208 DOI: 10.1371/journal.pcbi.1000457
    Matched MeSH terms: Computational Biology/methods*; Computational Biology/trends*
  16. Chai LE, Loh SK, Low ST, Mohamad MS, Deris S, Zakaria Z
    Comput Biol Med, 2014 May;48:55-65.
    PMID: 24637147 DOI: 10.1016/j.compbiomed.2014.02.011
    Many biological research areas such as drug design require gene regulatory networks to provide clear insight and understanding of the cellular process in living cells. This is because interactions among the genes and their products play an important role in many molecular processes. A gene regulatory network can act as a blueprint for the researchers to observe the relationships among genes. Due to its importance, several computational approaches have been proposed to infer gene regulatory networks from gene expression data. In this review, six inference approaches are discussed: Boolean network, probabilistic Boolean network, ordinary differential equation, neural network, Bayesian network, and dynamic Bayesian network. These approaches are discussed in terms of introduction, methodology and recent applications of these approaches in gene regulatory network construction. These approaches are also compared in the discussion section. Furthermore, the strengths and weaknesses of these computational approaches are described.
    Matched MeSH terms: Computational Biology/methods*
  17. Schönbach C, Tan TW, Kelso J, Rost B, Nathan S, Ranganathan S
    BMC Genomics, 2011 Nov 30;12 Suppl 3:S1.
    PMID: 22369160 DOI: 10.1186/1471-2164-12-S3-S1
    In 2009 the International Society for Computational Biology (ISCB) started to roll out regional bioinformatics conferences in Africa, Latin America and Asia. The open and competitive bid for the first meeting in Asia (ISCB-Asia) was awarded to Asia-Pacific Bioinformatics Network (APBioNet) which has been running the International Conference on Bioinformatics (InCoB) in the Asia-Pacific region since 2002. InCoB/ISCB-Asia 2011 is held from November 30 to December 2, 2011 in Kuala Lumpur, Malaysia. Of 104 manuscripts submitted to BMC Genomics and BMC Bioinformatics conference supplements, 49 (47.1%) were accepted. The strong showing of Asia among submissions (82.7%) and acceptances (81.6%) signals the success of this tenth InCoB anniversary meeting, and bodes well for the future of ISCB-Asia.
    Matched MeSH terms: Computational Biology*
  18. Ranganathan S, Schönbach C, Kelso J, Rost B, Nathan S, Tan TW
    BMC Bioinformatics, 2011;12 Suppl 13:S1.
    PMID: 22372736 DOI: 10.1186/1471-2105-12-S13-S1
    The 2011 International Conference on Bioinformatics (InCoB) conference, which is the annual scientific conference of the Asia-Pacific Bioinformatics Network (APBioNet), is hosted by Kuala Lumpur, Malaysia, is co-organized with the first ISCB-Asia conference of the International Society for Computational Biology (ISCB). InCoB and the sequencing of the human genome are both celebrating their tenth anniversaries and InCoB's goalposts for the next decade, implementing standards in bioinformatics and globally distributed computational networks, will be discussed and adopted at this conference. Of the 49 manuscripts (selected from 104 submissions) accepted to BMC Genomics and BMC Bioinformatics conference supplements, 24 are featured in this issue, covering software tools, genome/proteome analysis, systems biology (networks, pathways, bioimaging) and drug discovery and design.
    Matched MeSH terms: Computational Biology*
  19. Hawari AH, Mohamed-Hussein ZA
    BMC Bioinformatics, 2010;11:83.
    PMID: 20144236 DOI: 10.1186/1471-2105-11-83
    The development and simulation of dynamic models of terpenoid biosynthesis has yielded a systems perspective that provides new insights into how the structure of this biochemical pathway affects compound synthesis. These insights may eventually help identify reactions that could be experimentally manipulated to amplify terpenoid production. In this study, a dynamic model of the terpenoid biosynthesis pathway was constructed based on the Hybrid Functional Petri Net (HFPN) technique. This technique is a fusion of three other extended Petri net techniques, namely Hybrid Petri Net (HPN), Dynamic Petri Net (HDN) and Functional Petri Net (FPN).
    Matched MeSH terms: Computational Biology/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links