METHODS: Water extract of B. orientale was used. Excision wound healing activity was examined on Sprague-Dawley rats, dressed with 1% and 2% of the water extract. Control groups were dressed with the base cream (vehicle group, negative control) and 10% povidone-iodine (positive control) respectively. Healing was assessed based on contraction of wound size, mean epithelisation time, hydroxyproline content and histopathological examinations. Statistical analyses were performed using one way ANOVA followed by Tukey HSD test.
RESULTS: Wound healing study revealed significant reduction in wound size and mean epithelisation time, and higher collagen synthesis in the 2% extract-treated group compared to the vehicle group. These findings were supported by histolopathological examinations of healed wound sections which showed greater tissue regeneration, more fibroblasts and angiogenesis in the 2% extract-treated group.
CONCLUSIONS: The ethnotherapeutic use of this fern is validated. The water extract of B. orientale is a potential candidate for the treatment of dermal wounds. Synergistic effects of both strong antioxidant and antibacterial activities in the extract are deduced to have accelerated the wound repair at the proliferative phase of the healing process.
METHODS: Noni leaves (three doses) and black tea water extracts were fed to ovariectomized rats for 4 mo, and their effects (analyzed via mechanical measurements, micro-computed tomography scan, and reverse transcriptase polymerase chain reaction mRNA) were compared with Remifemin (a commercial phytoestrogen product from black cohosh).
RESULTS: The water extracts (dose-dependently for noni leaves) increased bone regeneration biomarker (runt-related transcription factor 2, bone morphogenetic protein 2, osteoprotegerin, estrogen receptor 1 [ESR1], collagen type I alpha 1A) expressions and reduced the inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, nuclear factor [NF]-κB, and receptor activator of NF-κB ligand) mRNA expressions/levels in the rats. The extracts also improved bone physical and mechanical properties. The extracts demonstrated bone regeneration through improving bone size and structure, bone mechanical properties (strength and flexibility), and bone mineralization and density.
CONCLUSIONS: The catechin-rich extract favored bone regeneration and suppressed bone resorption. The mechanisms involved enhancing osteoblast generation and survival, inhibiting osteoclast growth and activities, suppressing inflammation, improving bone collagen synthesis and upregulating ESR1 expression to augment phytoestrogenic effects. Estrogen deficiency bone loss and all extracts studied (best effect from Morinda leaf at 300 mg/kg body weight) mitigated the loss, indicating benefits for the aged and menopausal women.