Date fruit juice contains high concentration of simple sugars ranging from 65 to 75% (w/w) in dry form. In this study, the potential of date fruit juice as biobutanol fermentation medium by C. acetobutylicum was investigated. The fermentation process was carried out at initial pH of 5, 6 and 7, incubation temperature of 30, 35 and 40 degrees C for 72 hours. The date fruit concentrations tested were 10, 20, 30 and 40 g L(-1). Medium containing 30 g L(-1) of date fruit at 35 degrees C incubation temperature with initial medium pH 7.0 gave the highest concentration of solvents of 3.1, 0.1 and 1.1 g L(-1) butanol, ethanol and acetone respectively. The yield and productivity of biobutanol were 0.32 g g(-1) and 0.044 g L(-1)/h respectively, while for total ABE were 0.45 g g(-1) and 0.06 g L(-1) h, respectively.
The objective of this study is to investigate the effect of salts addition to fermentation medium on hydrogen production, under anaerobic batch culture system. In this study, batch experiments were conducted to investigate the inhibitory effect of both NaCl and sodium acetate on hydrogen production. The optimum pH and temperature for hydrogen production were at initial pH of 7.0 and 30 degrees C. Enhanced production of hydrogen, using glucose as substrate was achieved. In the absence of Sodium Chloride and Sodium Acetate enhanced hydrogen yield (Y(P/S)) from 350 mL g(-1) glucose utilized to 391 mL g(-1) glucose utilized with maximum hydrogen productivity of 77.5 ml/L/h. Results also show that sodium chloride and sodium acetate in the medium adversely affect growth. Hydrogen yield per biomass (Y(P/X)) of 254 ml/L/g, biomass per substrate utilized (Y(X/S)) of 0.268 and (Y(H2/S) of 0.0349. The results suggested that Sodium at any concentration resulted to inhibit the bacterial productivity of hydrogen.
Matched MeSH terms: Clostridium acetobutylicum/growth & development