OBJECTIVES: The objectives of this study were to evaluate whether a 1-time measurement of non-HDL-C or LDL-C in a young adult can predict cumulative exposure to these lipids during early adulthood, and to quantify the association between cumulative exposure to non-HDL-C or LDL-C during early adulthood and the risk of ASCVD after age 40 years.
METHODS: We included CARDIA (Coronary Artery Risk Development in Young Adults Study) participants who were free of cardiovascular disease before age 40 years, were not taking lipid-lowering medications, and had ≥3 measurements of LDL-C and non-HDL-C before age 40 years. First, we assessed the ability of a 1-time measurement of LDL-C or non-HDL-C obtained between age 18 and 30 years to predict the quartile of cumulative lipid exposure from ages 18 to 40 years. Second, we assessed the associations between quartiles of cumulative lipid exposure from ages 18 to 40 years with ASCVD events (fatal and nonfatal myocardial infarction and stroke) after age 40 years.
RESULTS: Of 4,104 CARDIA participants who had multiple lipid measurements before and after age 30 years, 3,995 participants met our inclusion criteria and were in the final analysis set. A 1-time measure of non-HDL-C and LDL-C had excellent discrimination for predicting membership in the top or bottom quartiles of cumulative exposure (AUC: 0.93 for the 4 models). The absolute values of non-HDL-C and LDL-C that predicted membership in the top quartiles with the highest simultaneous sensitivity and specificity (highest Youden's Index) were >135 mg/dL for non-HDL-C and >118 mg/dL for LDL-C; the values that predicted membership in the bottom quartiles were <107 mg/dL for non-HDL-C and <96 mg/dL for LDL-C. Individuals in the top quartile of non-HDL-C and LDL-C exposure had demographic-adjusted HRs of 4.6 (95% CI: 2.84-7.29) and 4.0 (95% CI: 2.50-6.33) for ASCVD events after age 40 years, respectively, when compared with each bottom quartile.
CONCLUSIONS: Single measures of non-HDL-C and LDL-C obtained between ages 18 and 30 years are highly predictive of cumulative exposure before age 40 years, which in turn strongly predicts later-life ASCVD events.
OBJECTIVE: The primary study objective was to evaluate the postprandial fate of tocotrienols and alpha-tocopherol in human plasma and lipoproteins.
DESIGN: Seven healthy volunteers (4 males, 3 females) were administered a single dose of vitamin E [1011 mg palm tocotrienol-rich fraction (TRF) or 1074 mg alpha-tocopherol] after a 7-d conditioning period with a tocotrienol-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of tocopherol and tocotrienol isomers in plasma, triacylglycerol-rich particles (TRPs), LDLs, and HDLs were measured at each interval.
RESULTS: After intervention with TRF, plasma tocotrienols peaked at 4 h (4.79 +/- 1.2 microg/mL), whereas alpha-tocopherol peaked at 6 h (13.46 +/- 1.68 microg/mL). Although tocotrienols were similarly detected in TRPs, LDLs, and HDLs, tocotrienol concentrations were significantly lower than alpha-tocopherol concentrations. In comparison, plasma alpha-tocopherol peaked at 8 h (24.3 +/- 5.22 microg/mL) during the alpha-tocopherol treatment and emerged as the major vitamin E isomer detected in plasma and lipoproteins during both the TRF and the alpha-tocopherol treatments.
CONCLUSIONS: Tocotrienols are detected in postprandial plasma, albeit in significantly lower concentrations than is alpha-tocopherol. This finding confirms previous observations that, in the fasted state, tocotrienols are not detected in plasma. Tocotrienol transport in lipoproteins appears to follow complex biochemically mediated pathways within the lipoprotein cascade.
Methods: A multi-centred matched case control study was conducted in five local hospitals. A total of 140 histologically confirmed CRC cases were matched with 280 cancer free controls. Mean value and prevalence of the components of metabolic syndrome between cases and controls were measured based on the three definitions. A multiple variable analysis using Cox regression was conducted to measure the strength of the association between the definitions of MetS, components of MetS and risk of CRC.
Results: Multiple variable analyses showed that metabolic syndrome significantly and independently increased the risk of CRC, with an odds ratio ranging from 1.79 to 2.61. This study identified that the definition of metabolic syndrome by the International Diabetes Federation is the most sensitive in predicting the risk of CRC, compared to metabolic syndrome as defined by the World Health Organization and National Cholesterol Education Program Adults Treatment Panel III. Abdominal obesity, low HDL-cholesterol, and hypertension were identified as the three core risk factors, which promote inflammatory signals that contribute to metabolic syndrome and an increased risk of CRC.
Conclusions: These data hypothesized that simple measurement of abdominal obesity, abnormal BP and HDL-cholesterol especially using International Diabetes Federation (IDF) definition of MetS for South Asians for to detect individuals at CRC risk may have higher clinical utility than applying other universal complex MetS definitions.
METHODOLOGY: A total of 56 consecutive children aged 6 to 18 years old were recruited from the pediatric obesity and type 2 diabetes mellitus (T2DM) clinic in University Malaya Medical Centre (UMMC) from 2016 to 2019. Data on anthropometric measurements, clinical components of metabolic syndrome and fasting serum insulin were collected. Triglyceride to high-density lipoprotein cholesterol ratio (TG: HDL-C), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and Single Point Insulin Sensitivity Estimator (SPISE) were calculated. Transient elastography was performed with hepatic steatosis and liver fibrosis assessed by controlled attenuation parameter (CAP) and liver stiffness measurement (LSM), respectively.
RESULTS: A total of 44 children (78.6%) had liver steatosis and 35.7% had presence of significant liver fibrosis (stage F≥2). Majority (89.3%) are obese and 24 children (42.9%) were diagnosed with metabolic syndrome. Higher number of children with T2DM and significant liver fibrosis were associated with higher tertiles of TG: HDL-C ratio (p<0.05). Top tertile of TG: HDL-C ratio was an independent predictor of liver fibrosis (OR=8.14, 95%CI: 1.24-53.36, p=0.029). ROC analysis showed that the area under the curve (AUC) of HOMA-IR (0.77) and TG: HDL-C ratio (0.71) were greater than that of metabolic syndrome (0.70), T2DM (0.62) and SPISE (0.22). The optimal cut-off values of HOMA-IR and TG: HDL-C ratio for detecting liver fibrosis among children with NAFLD are 5.20 and 1.58, respectively.
CONCLUSION: Children with NAFLD and higher TG: HDL-C ratio are more likely to have liver fibrosis. TG: HDL-C ratio is a promising tool to risk stratify those with NAFLD who are at risk of developing advanced liver disease.