Displaying all 9 publications

Abstract:
Sort:
  1. Leong KY, Adnan R, Lim PE, Ng SL, Seng CE
    Environ Sci Pollut Res Int, 2017 Sep;24(26):20959-20971.
    PMID: 28726220 DOI: 10.1007/s11356-017-9636-7
    The effects of dry biomass density in cryogel beads, shaking speed and initial concentration ratio of phenol to 4-chlorophenol (4-CP) on the bioregeneration efficiencies of binary phenol and 4-CP-loaded granular activated carbon (GAC) for phenol and 4-CP, respectively, were investigated under the simultaneous adsorption and biodegradation approach. The results revealed higher bioregeneration efficiencies of binary-loaded GAC for phenol and 4-CP at higher dry biomass density but moderate shaking speed. The optimum dry biomass density in cryogel beads and shaking speed for use in bioregeneration were found to be 0.01 g/mL and 250 rpm, respectively. With respect to the initial phenol to 4-CP concentration ratio, the bioregeneration efficiencies were lower under increasing phenol and 4-CP initial concentrations, respectively, with the effect being more conspicuous under increasing 4-CP concentration. Higher bioregeneration efficiencies were achieved with the use of immobilized rather than suspended biomasses.
    Matched MeSH terms: Chlorophenols/chemistry*
  2. Sin JC, Lam SM, Lee KT, Mohamed AR
    J Colloid Interface Sci, 2013 Jul 1;401:40-9.
    PMID: 23618322 DOI: 10.1016/j.jcis.2013.03.043
    A novel samarium-doped spherical-like ZnO hierarchical nanostructure (Sm/ZnO) was synthesized via a facile and surfactant-free chemical solution route. The as-synthesized products were characterized by X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, field emission scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The results revealed that Sm ion was successfully doped into ZnO. It was also observed that the Sm doping increased the visible light absorption ability of Sm/ZnO and a red shift for Sm/ZnO appeared when compared to pure ZnO. The photocatalytic studies revealed that the Sm/ZnO exhibited excellent photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) compared with the pure ZnO and commercial TiO2 under visible light irradiation. The photocatalytic enhancement of Sm/ZnO products was attributed to their high charge separation efficiency and ·OH generation ability as evidenced by the photoluminescence spectra. The photocatalytic investigation also showed that various parameters exerted their individual influence on the degradation rate of 2,4-DCP. By using a certain of radical scavengers, ·OH was determined to play a pivotal role for the 2,4-DCP degradation. Moreover, the Sm/ZnO could be easily separated and reused, indicating great potential for practical applications in environmental cleanup.
    Matched MeSH terms: Chlorophenols/chemistry*
  3. Surikumaran H, Mohamad S, Sarih NM
    Int J Mol Sci, 2014;15(4):6111-36.
    PMID: 24727378 DOI: 10.3390/ijms15046111
    This work describes methacrylic acid functionalized β-cyclodextrin (MAA-βCD) as a novel functional monomer in the preparation of molecular imprinted polymer (MIP MAA-βCD) for the selective removal of 2,4-dichlorophenol (2,4-DCP). The polymer was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The influence of parameters such as solution pH, contact time, temperature and initial concentrations towards removal of 2,4-DCP using MIP MAA-βCD have been evaluated. The imprinted material shows fast kinetics and the optimum pH for removal of 2,4-DCP is pH 7. Compared with the corresponding non-imprinted polymer (NIP MAA-βCD), the MIP MAA-βCD exhibited higher adsorption capacity and outstanding selectivity towards 2,4-DCP. Freundlich isotherm best fitted the adsorption equilibrium data of MIP MAA-βCD and the kinetics followed a pseudo-second-order model. The calculated thermodynamic parameters showed that adsorption of 2,4-DCP was spontaneous and exothermic under the examined conditions.
    Matched MeSH terms: Chlorophenols/chemistry*
  4. Gaya UI, Abdullah AH, Zainal Z, Hussein MZ
    J Hazard Mater, 2009 Aug 30;168(1):57-63.
    PMID: 19268454 DOI: 10.1016/j.jhazmat.2009.01.130
    The photocatalytically driven removal of eco-persistent 4-chlorophenol from water using ZnO is reported here. Kinetic dependence of transformation rate on operating variables such as initial 4-chlorophenol concentration and photocatalyst doses was investigated. A complete degradation of 4-chlorophenol at 50 mg L(-1) levels was realised in 3h. Analytical profiles on 4-chlorophenol transformation were consistent with the best-line fit of the pseudo zero-order kinetics. The addition of small amounts of inorganic anions as SO(4)(2-), HPO(4)(-), S(2)O(8)(2-) and Cl(-) revealed two anion types: active site blockers and rate enhancers. Fortunately, Cl(-) and SO(4)(2-) commonly encountered in contaminated waters enhanced the rate of 4-chlorophenol degradation. The reaction intermediates and route to 4-chlorophenol mineralisation were elucidated by combined RP-HPLC and GC-MS methods. In addition to previously reported pathway products of 4-chlorophenol photo-oxidation catechol was detected. A radical mechanism involving o-hydroxylation is proposed to account for the formation of catechol.
    Matched MeSH terms: Chlorophenols/chemistry
  5. Tan IA, Ahmad AL, Hameed BH
    J Hazard Mater, 2009 May 30;164(2-3):473-82.
    PMID: 18818013 DOI: 10.1016/j.jhazmat.2008.08.025
    The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), standard free energy (DeltaG degrees ) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.
    Matched MeSH terms: Chlorophenols/chemistry
  6. Tan IA, Ahmad AL, Hameed BH
    J Hazard Mater, 2008 May 1;153(1-2):709-17.
    PMID: 17935879
    Activated carbon was prepared from coconut husk using physicochemical activation method which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of three preparation variables (CO(2) activation temperature, CO(2) activation time and KOH:char impregnation ratio) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and activated carbon yield were investigated. Based on the central composite design, two quadratic models were developed to correlate the preparation variables to the two responses. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The activated carbon preparation conditions were optimized by maximizing both the 2,4,6-TCP uptake and activated carbon yield. The predicted 2,4,6-TCP uptake and carbon yield from the models agreed satisfactorily with the experimental values. The optimum conditions for preparing activated carbon from coconut husk for adsorption of 2,4,6-TCP were found as follow: CO(2) activation temperature of 750 degrees C, CO(2) activation time of 2.29 h and KOH:char impregnation ratio of 2.91, which resulted in 191.73 mg/g of 2,4,6-TCP uptake and 20.16 % of activated carbon yield.
    Matched MeSH terms: Chlorophenols/chemistry*
  7. Alam MZ, Muyibi SA, Toramae J
    J Environ Sci (China), 2007;19(6):674-7.
    PMID: 17969639
    The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation of activation time with 30 min at 800 degrees C. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R2 = 0.93) for removal of 2,4-dichlorophenol by the activated carbon rather than Freundlich isotherm (R2 = 0.88).
    Matched MeSH terms: Chlorophenols/chemistry*
  8. Ghaemi F, Amiri A
    J Chromatogr A, 2020 Aug 30;1626:461386.
    PMID: 32797858 DOI: 10.1016/j.chroma.2020.461386
    In this study, the microcrystalline cellulose/metal-organic framework 199 hybrid (MCC/MOF-199) was applied as sorbent for the dispersive micro-solid phase-extraction (D-μSPE) of chlorophenols. The D-μSPE method combined with high-performance liquid chromatography- ultraviolet detection (HPLC-UV) was employed to determine of four chlorophenols including 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,3-dichlorophenol (2,3-DCP), and 2,5-dichlorophenol (2,5-DCP) in aqueous. The main parameters of the D-μSPE process that influence the extraction (i.e. the amount of sorbent, elution condition, extraction time, and pH) were investigated and optimized. Based on the outputs, the presence of MCC on the surface of MOF-199 leads to improve the properties of MOF-199 and the MCC/MOF-199 has the highest sorption capacity, durability, and porosity in comparison with MCC and MOF-199. According to the validation study at the optimized conditions, the linearity for the analytes was achieved in the range from 0.1 to 200 ng mL-1 for 2-CP and 4-CP and 0.15 to 200 ng mL-1 for 2,3-DCP and 2,5-DCP with correlation coefficients between 0.9928 and 0.9965. The limits of detection calculated at S/N=3 were in the range of 0.03-0.05 ng mL-1. Besides, the relative standard deviations (RSDs) for three spiking levels (0.2, 10,100 ng mL-1) do not exceed 6.8% and extraction recoveries are between 81.0% and 88.3%. Finally, the D-μSPE-HPLC-UV method was successfully applied to the analysis of CPs in real water samples (mineral, river and wastewater samples) with good recoveries (95.8 to 99.5%) and satisfactory precisions (RSD < 6.8%).
    Matched MeSH terms: Chlorophenols/chemistry
  9. Saremi K, Rad SK, Khalilzadeh M, Hussaini J, Majid NA
    Acta Biochim Biophys Sin (Shanghai), 2020 Jan 02;52(1):26-37.
    PMID: 31889181 DOI: 10.1093/abbs/gmz140
    Chlorine is shown to possess anti-gastric ulcer activity, since it can inactivate Helicobacter pylori, which is regarded as one of the most common risk factors for causing gastric problems. In the current study, the gastroprotective property of a novel dichloro-substituted Schiff base complex, 2, 2'- [-1, 2-cyclohexanediylbis(nitriloethylidyne)] bis(4-chlorophenol) (CNCP), against alcohol-induced gastric lesion in SD rats was assessed. SD rats were divided into four groups, i.e. normal, ulcer control, testing, and reference groups. Ulcer area, gastric wall mucus, and also gastric acidity of the animal stomachs were measured. In addition, antioxidant activity of CNCP was evaluated and its safe dose was identified. Immunohistochemistry staining was also carried to evaluate two important proteins, i.e. Bcl2-associated X protein (Bax) and heat shock protein 70 (HSP70). Moreover, the activities of super oxide dismutase and catalase, as well as the levels of prostaglandin E2 (PGE2) and malondialdehyde (MDA) were also measured. Antioxidant activity of CNCP was approved via the aforementioned experiments. Histological evaluations showed that the compound possesses stomach epithelial defense activity. Additionally, periodic acid-Schiff staining exhibited over-expression of HSP70 and down-expression of Bax protein in the CNCP-treated rats. Moreover, CNCP caused deceased MDA level and elevated PGE2 level, and at the same time increased the activities of the two enzymes.
    Matched MeSH terms: Chlorophenols/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links