Displaying all 4 publications

Abstract:
Sort:
  1. Abdul Hadi N, Marefati A, Purhagen J, Rayner M
    Int J Biol Macromol, 2024 May;267(Pt 1):131523.
    PMID: 38608987 DOI: 10.1016/j.ijbiomac.2024.131523
    Rice and quinoa starches are modified with short-chain fatty acids (SCFA) with different SCFA acyl chain lengths and levels of modification. This work is aimed to investigate the impact of modifying rice and quinoa starches with short-chain fatty acids (SCFAs) on various physicochemical properties, including particle size, protein and amylose content, thermal behavior, pasting characteristics, and in vitro digestibility. Both native and SCFA-starches showed comparable particle sizes, with rice starches ranging from 1.58 to 2.22 μm and quinoa starches from 5.18 to 5.72 μm. SCFA modification led to lower protein content in both rice (0.218-0.255 %) and quinoa starches (0.537-0.619 %) compared to their native counterparts. Esterification led to the reduction of gelatinization and pasting temperatures as well as the hardness of the paste of SCFA-starches were reduced while paste clarity increased. The highest level of modification in SCFA-starch was associated with the highest amount of resistant starch fraction. Principal component analysis revealed that modification levels exerted a greater influence on starch properties than the types of SCFA used (acetyl, propionyl, and butyryl). These findings is importance in considering the degree of substitution or level of modification when tailoring starch properties through SCFA modification, with implications for various applications in food applications.
    Matched MeSH terms: Chenopodium quinoa/chemistry
  2. Abdul Hadi N, Marefati A, Matos M, Wiege B, Rayner M
    Carbohydr Polym, 2020 Jul 15;240:116264.
    PMID: 32475554 DOI: 10.1016/j.carbpol.2020.116264
    Acetylated, propionylated and butyrylated rice and quinoa starches at different levels of modification and starch concentrations, were used to stabilize oil-in-water starch Pickering emulsions at 10% oil fraction. Short-chain fatty acid modified starch Pickering emulsions (SPEs) were characterized after emulsification and after 50 days of storage. The particle size distribution, microstructure, emulsion index, and stability were evaluated. An increase in starch concentration led to a decrease of emulsion droplet sizes. Quinoa starch has shown the capability of stabilizing Pickering emulsions in both the native and modified forms. The emulsifying capacity of SPEs was improved by increasing the chain length of SCFA. Modified quinoa starch with higher chain lengths (i.e. propionylated and butyrylated), at higher levels of modification, showed higher emulsion index (>71%) and stability over the entire 50 days storage. At optimized formulation, SCFA-starch particles have the potential in stabilizing emulsions for functional foods, pharmaceutical formulations, or industrial food applications.
    Matched MeSH terms: Chenopodium quinoa/chemistry*
  3. Shishir MRI, Suo H, Taip FS, Cheng KW
    Food Chem, 2024 Oct 30;456:139818.
    PMID: 38878531 DOI: 10.1016/j.foodchem.2024.139818
    This study aimed to develop complex coacervates utilizing lactoferrin (LF) and chia seed mucilage (CSM) for promoting intestinal delivery of quercetin (Q) and fortification of set yogurt. Three cross-linkers, including calcium chloride (CC), transglutaminase (TG), and polyphenolic complex (HP), were used to further reinforce the coacervate network. Cross-linked coacervates had higher values of coacervate yield, encapsulation efficiency, and loading capacity. They efficiently preserved Q under gastric condition (⁓87%-99%), with CSM-TG-Q-LF being most effective for intestinal delivery of Q. Moreover, digested pellets of the cross-linked coacervates displayed better antioxidant activity than the uncross-linked coacervates with CSM-TG-Q-LF pellets showing maximum bioactivity. The Q-loaded coacervates demonstrated superior assembly in the yogurt matrix compared to the unencapsulated Q. Moreover, the coacervate systems, especially CSM-TG-Q-LF significantly improved the textural properties of yogurt and the stability of Q in it. Therefore, CSM-TG-LF is a promising carrier to promote intestinal delivery and food application of hydrophobic molecules.
    Matched MeSH terms: Chenopodium quinoa/chemistry
  4. Mariod AA, Salama SM
    ScientificWorldJournal, 2020;2020:6326452.
    PMID: 32549800 DOI: 10.1155/2020/6326452
    The current study has been conducted to evaluate the effect of different processing techniques on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and the gastroprotective potential of Chenopodium quinoa red seeds in acute gastric injury induced by absolute ethanol in rats. Seven groups of female Sprague Dawley rats were assigned to normal and absolute ethanol (absolute EtOH) groups, given distilled water, reference control omeprazole (OMP, 20 mg/kg), pressure-cooked quinoa seeds (QP, 200 mg/kg), first stage-germinated quinoa seeds (QG, 200 mg/kg), Lactobacillus plantarum bacteria-fermented quinoa seeds (QB, 200 mg/kg), and Rhizopus oligosporus fungus-fermented quinoa seeds (QF, 200 mg/kg). One hour after treatment, all groups were given absolute ethanol, except for the normal control rats. All animals were sacrificed after an additional hour, and the stomach tissues were examined for histopathology of hematoxylin and eosin staining, immunohistochemistry of cyclooxygenase 2 (COX-2), and nitric oxide synthase (iNOS). Stomach homogenates were evaluated for oxidative stress parameters and prostaglandin E2 (PGE2). Gene expression was performed for gastric tumor necrosis factor alpha (TNF-α) and nuclear factor kappa of B cells (NF-kB). QB and QG recorded the highest DPPH scavengers compared to QF and QP. The gastroprotective potential of QB was comparable to that of OMP, followed by QF, then QG, and QP as confirmed by the histopathology, immunohistochemistry, and gene expression assessments. In conclusion, differently processed red quinoa seeds revealed variable antioxidant capacity and gastroprotective potential, while the bacterial fermented seeds (QB) showed the highest potential compared to the other processing techniques. These results might offer promising new therapy in the treatment of acute gastric injury.
    Matched MeSH terms: Chenopodium quinoa/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links