Displaying all 12 publications

Abstract:
Sort:
  1. Pszczolkowski S, Sprigg N, Woodhouse LJ, Gallagher R, Swienton D, Law ZK, et al.
    JAMA Neurol, 2022 May 01;79(5):468-477.
    PMID: 35311937 DOI: 10.1001/jamaneurol.2022.0217
    IMPORTANCE: Hyperintense foci on diffusion-weighted imaging (DWI) that are spatially remote from the acute hematoma occur in 20% of people with acute spontaneous intracerebral hemorrhage (ICH). Tranexamic acid, a hemostatic agent that is under investigation for treating acute ICH, might increase DWI hyperintense lesions (DWIHLs).

    OBJECTIVE: To establish whether tranexamic acid compared with placebo increased the prevalence or number of remote cerebral DWIHLs within 2 weeks of ICH onset.

    DESIGN, SETTING, AND PARTICIPANTS: This prospective nested magnetic resonance imaging (MRI) substudy of a randomized clinical trial (RCT) recruited participants from the multicenter, double-blind, placebo-controlled, phase 3 RCT (Tranexamic Acid for Hyperacute Primary Intracerebral Hemorrhage [TICH-2]) from July 1, 2015, to September 30, 2017, and conducted follow-up to 90 days after participants were randomized to either the tranexamic acid or placebo group. Participants had acute spontaneous ICH and included TICH-2 participants who provided consent to undergo additional MRI scans for the MRI substudy and those who had clinical MRI data that were compatible with the brain MRI protocol of the substudy. Data analyses were performed on an intention-to-treat basis on January 20, 2020.

    INTERVENTIONS: The tranexamic acid group received 1 g in 100-mL intravenous bolus loading dose, followed by 1 g in 250-mL infusion within 8 hours of ICH onset. The placebo group received 0.9% saline within 8 hours of ICH onset. Brain MRI scans, including DWI, were performed within 2 weeks.

    MAIN OUTCOMES AND MEASURES: Prevalence and number of remote DWIHLs were compared between the treatment groups using binary logistic regression adjusted for baseline covariates.

    RESULTS: A total of 219 participants (mean [SD] age, 65.1 [13.8] years; 126 men [57.5%]) who had brain MRI data were included. Of these participants, 96 (43.8%) were randomized to receive tranexamic acid and 123 (56.2%) were randomized to receive placebo. No baseline differences in demographic characteristics and clinical or imaging features were found between the groups. There was no increase for the tranexamic acid group compared with the placebo group in DWIHL prevalence (20 of 96 [20.8%] vs 28 of 123 [22.8%]; odds ratio [OR], 0.71; 95% CI, 0.33-1.53; P = .39) or mean (SD) number of DWIHLs (1.75 [1.45] vs 1.81 [1.71]; mean difference [MD], -0.08; 95% CI, -0.36 to 0.20; P = .59). In an exploratory analysis, participants who were randomized within 3 hours of ICH onset or those with chronic infarcts appeared less likely to have DWIHLs if they received tranexamic acid. Participants with probable cerebral amyloid angiopathy appeared more likely to have DWIHLs if they received tranexamic acid.

    CONCLUSIONS AND RELEVANCE: This substudy of an RCT found no evidence of increased prevalence or number of remote DWIHLs after tranexamic acid treatment in acute ICH. These findings provide reassurance for ongoing and future trials that tranexamic acid for acute ICH is unlikely to induce cerebral ischemic events.

    TRIAL REGISTRATION: isrctn.org Identifier: ISRCTN93732214.

    Matched MeSH terms: Cerebral Hemorrhage/drug therapy
  2. Krishnan K, Law ZK, Woodhouse LJ, Dineen RA, Sprigg N, Wardlaw JM, et al.
    Stroke Vasc Neurol, 2023 Apr;8(2):151-160.
    PMID: 36202546 DOI: 10.1136/svn-2021-001375
    BACKGROUND AND PURPOSE: Intracerebral haemorrhage volume (ICHV) is prognostically important but does not account for intracranial volume (ICV) and cerebral parenchymal volume (CPV). We assessed measures of intracranial compartments in acute ICH using computerised tomography scans and whether ICHV/ICV and ICHV/CPV predict functional outcomes. We also assessed if cistern effacement, midline shift, old infarcts, leukoaraiosis and brain atrophy were associated with outcomes.

    METHODS: Data from 133 participants from the Rapid Intervention with Glyceryl Trinitrate in Hypertensive Stroke-2 Trial trial were analysed. Measures included ICHV (using ABC/2) and ICV (XYZ/2) (by independent observers); ICHV, ICV and CPV (semiautomated segmentation, SAS); atrophy (intercaudate distance, ICD, Sylvian fissure ratio, SFR); midline shift; leukoaraiosis and cistern effacement (visual assessment). The effects of these measures on death at day 4 and poor functional outcome at day 90 (modified Rankin scale, mRS of >3) was assessed.

    RESULTS: ICV was significantly different between XYZ and SAS: mean (SD) of 1357 (219) vs 1420 (196), mean difference (MD) 62 mL (p<0.001). There was no significant difference in ICHV between ABC/2 and SAS. There was very good agreement for ICV measured by SAS, CPV, ICD, SFR, leukoaraiosis and cistern score (all interclass correlations, n=10: interobserver 0.72-0.99, intraobserver 0.73-1.00). ICHV/ICV and ICHV/CPV were significantly associated with mRS at day 90, death at day 4 and acute neurological deterioration (all p<0.05), similar to ICHV. Midline shift and cistern effacement at baseline were associated with poor functional outcome but old infarcts, leukoaraiosis and brain atrophy were not.

    CONCLUSIONS: Intracranial compartment measures and visual estimates are reproducible. ICHV adjusted for ICH and CPV could be useful to prognosticate in acute stroke. The presence of midline shift and cistern effacement may predict outcome but the mechanisms need validation in larger studies.

    Matched MeSH terms: Cerebral Hemorrhage/drug therapy
  3. Wang X, Yang J, Moullaali TJ, Sandset EC, Woodhouse LJ, Law ZK, et al.
    Stroke, 2024 Apr;55(4):849-855.
    PMID: 38410986 DOI: 10.1161/STROKEAHA.123.044358
    OBJECTIVE: To investigate whether an earlier time to achieving and maintaining systolic blood pressure (SBP) at 120 to 140 mm Hg is associated with favorable outcomes in a cohort of patients with acute intracerebral hemorrhage.

    METHODS: We pooled individual patient data from randomized controlled trials registered in the Blood Pressure in Acute Stroke Collaboration. Time was defined as time form symptom onset plus the time (hour) to first achieve and subsequently maintain SBP at 120 to 140 mm Hg over 24 hours. The primary outcome was functional status measured by the modified Rankin Scale at 90 to 180 days. A generalized linear mixed models was used, with adjustment for covariables and trial as a random effect.

    RESULTS: A total of 5761 patients (mean age, 64.0 [SD, 13.0], 2120 [36.8%] females) were included in analyses. Earlier SBP control was associated with better functional outcomes (modified Rankin Scale score, 3-6; odds ratio, 0.98 [95% CI, 0.97-0.99]) and a significant lower risk of hematoma expansion (0.98, 0.96-1.00). This association was stronger in patients with bigger baseline hematoma volume (>10 mL) compared with those with baseline hematoma volume ≤10 mL (0.006 for interaction). Earlier SBP control was not associated with cardiac or renal adverse events.

    CONCLUSIONS: Our study confirms a clear time relation between early versus later SBP control (120-140 mm Hg) and outcomes in the one-third of patients with intracerebral hemorrhage who attained sustained SBP levels within this range. These data provide further support for the value of early recognition, rapid transport, and prompt initiation of treatment of patients with intracerebral hemorrhage.

    Matched MeSH terms: Cerebral Hemorrhage/drug therapy
  4. Eilertsen H, Menon CS, Law ZK, Chen C, Bath PM, Steiner T, et al.
    Cochrane Database Syst Rev, 2023 Oct 23;10(10):CD005951.
    PMID: 37870112 DOI: 10.1002/14651858.CD005951.pub5
    BACKGROUND: Outcome after acute spontaneous (non-traumatic) intracerebral haemorrhage (ICH) is influenced by haematoma volume. ICH expansion occurs in about 20% of people with acute ICH. Early haemostatic therapy might improve outcome by limiting ICH expansion. This is an update of a Cochrane Review first published in 2006, and last updated in 2018.

    OBJECTIVES: To examine 1. the effects of individual classes of haemostatic therapies, compared with placebo or open control, in adults with acute spontaneous ICH, and 2. the effects of each class of haemostatic therapy according to the use and type of antithrombotic drug before ICH onset.

    SEARCH METHODS: We searched the Cochrane Stroke Trials Register, CENTRAL (2022, Issue 8), MEDLINE Ovid, and Embase Ovid on 12 September 2022. To identify further published, ongoing, and unpublished randomised controlled trials (RCTs), we scanned bibliographies of relevant articles and searched international registers of RCTs in September 2022.

    SELECTION CRITERIA: We included RCTs of any haemostatic intervention (i.e. procoagulant treatments such as clotting factor concentrates, antifibrinolytic drugs, platelet transfusion, or agents to reverse the action of antithrombotic drugs) for acute spontaneous ICH, compared with placebo, open control, or an active comparator.

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcome was death/dependence (modified Rankin Scale (mRS) 4 to 6) by day 90. Secondary outcomes were ICH expansion on brain imaging after 24 hours, all serious adverse events, thromboembolic adverse events, death from any cause, quality of life, mood, cognitive function, Barthel Index score, and death or dependence measured on the Extended Glasgow Outcome Scale by day 90.

    MAIN RESULTS: We included 20 RCTs involving 4652 participants: nine RCTs of recombinant activated factor VII (rFVIIa) versus placebo/open control (1549 participants), eight RCTs of antifibrinolytic drugs versus placebo/open control (2866 participants), one RCT of platelet transfusion versus open control (190 participants), and two RCTs of prothrombin complex concentrates (PCC) versus fresh frozen plasma (FFP) (47 participants). Four (20%) RCTs were at low risk of bias in all criteria. For rFVIIa versus placebo/open control for spontaneous ICH with or without surgery there was little to no difference in death/dependence by day 90 (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.74 to 1.05; 7 RCTs, 1454 participants; low-certainty evidence). We found little to no difference in ICH expansion between groups (RR 0.81, 95% CI 0.56 to 1.16; 4 RCTs, 220 participants; low-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 0.81, 95% CI 0.30 to 2.22; 2 RCTs, 87 participants; very low-certainty evidence; death from any cause: RR 0.78, 95% CI 0.56 to 1.08; 8 RCTs, 1544 participants; moderate-certainty evidence). For antifibrinolytic drugs versus placebo/open control for spontaneous ICH, there was no difference in death/dependence by day 90 (RR 1.00, 95% CI 0.93 to 1.07; 5 RCTs, 2683 participants; high-certainty evidence). We found a slight reduction in ICH expansion with antifibrinolytic drugs for spontaneous ICH compared to placebo/open control (RR 0.86, 95% CI 0.76 to 0.96; 8 RCTs, 2866 participants; high-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 1.02, 95% CI 0.75 to 1.39; 4 RCTs, 2599 participants; high-certainty evidence; death from any cause: RR 1.02, 95% CI 0.89 to 1.18; 8 RCTs, 2866 participants; high-certainty evidence). There was little to no difference in quality of life, mood, or cognitive function (quality of life: mean difference (MD) 0, 95% CI -0.03 to 0.03; 2 RCTs, 2349 participants; mood: MD 0.30, 95% CI -1.98 to 2.57; 2 RCTs, 2349 participants; cognitive function: MD -0.37, 95% CI -1.40 to 0.66; 1 RCTs, 2325 participants; all high-certainty evidence). Platelet transfusion likely increases death/dependence by day 90 compared to open control for antiplatelet-associated ICH (RR 1.29, 95% CI 1.04 to 1.61; 1 RCT, 190 participants; moderate-certainty evidence). We found little to no difference in ICH expansion between groups (RR 1.32, 95% CI 0.91 to 1.92; 1 RCT, 153 participants; moderate-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 1.46, 95% CI 0.98 to 2.16; 1 RCT, 190 participants; death from any cause: RR 1.42, 95% CI 0.88 to 2.28; 1 RCT, 190 participants; both moderate-certainty evidence). For PCC versus FFP for anticoagulant-associated ICH, the evidence was very uncertain about the effect on death/dependence by day 90, ICH expansion, all serious adverse events, and death from any cause between groups (death/dependence by day 90: RR 1.21, 95% CI 0.76 to 1.90; 1 RCT, 37 participants; ICH expansion: RR 0.54, 95% CI 0.23 to 1.22; 1 RCT, 36 participants; all serious adverse events: RR 0.27, 95% CI 0.02 to 3.74; 1 RCT, 5 participants; death from any cause: RR 0.49, 95% CI 0.16 to 1.56; 2 RCTs, 42 participants; all very low-certainty evidence).

    AUTHORS' CONCLUSIONS: In this updated Cochrane Review including 20 RCTs involving 4652 participants, rFVIIa likely results in little to no difference in reducing death or dependence after spontaneous ICH with or without surgery; antifibrinolytic drugs result in little to no difference in reducing death or dependence after spontaneous ICH, but result in a slight reduction in ICH expansion within 24 hours; platelet transfusion likely increases death or dependence after antiplatelet-associated ICH; and the evidence is very uncertain about the effect of PCC compared to FFP on death or dependence after anticoagulant-associated ICH. Thirteen RCTs are ongoing and are likely to increase the certainty of the estimates of treatment effect.

    Matched MeSH terms: Cerebral Hemorrhage/drug therapy
  5. Law ZK, Ali A, Krishnan K, Bischoff A, Appleton JP, Scutt P, et al.
    Stroke, 2020 01;51(1):121-128.
    PMID: 31735141 DOI: 10.1161/STROKEAHA.119.026128
    Background and Purpose- Blend, black hole, island signs, and hypodensities are reported to predict hematoma expansion in acute intracerebral hemorrhage. We explored the value of these noncontrast computed tomography signs in predicting hematoma expansion and functional outcome in our cohort of intracerebral hemorrhage. Methods- The TICH-2 (Tranexamic acid for IntraCerebral Hemorrhage-2) was a prospective randomized controlled trial exploring the efficacy and safety of tranexamic acid in acute intracerebral hemorrhage. Baseline and 24-hour computed tomography scans of trial participants were analyzed. Hematoma expansion was defined as an increase in hematoma volume of >33% or >6 mL on 24-hour computed tomography. Poor functional outcome was defined as modified Rankin Scale of 4 to 6 at day 90. Multivariable logistic regression was performed to identify predictors of hematoma expansion and poor functional outcome. Results- Of 2325 patients recruited, 2077 (89.3%) had valid baseline and 24-hour scans. Five hundred seventy patients (27.4%) had hematoma expansion while 1259 patients (54.6%) had poor functional outcome. The prevalence of noncontrast computed tomography signs was blend sign, 366 (16.1%); black hole sign, 414 (18.2%); island sign, 200 (8.8%); and hypodensities, 701 (30.2%). Blend sign (adjusted odds ratio [aOR] 1.53 [95% CI, 1.16-2.03]; P=0.003), black hole (aOR, 2.03 [1.34-3.08]; P=0.001), and hypodensities (aOR, 2.06 [1.48-2.89]; P<0.001) were independent predictors of hematoma expansion on multivariable analysis with adjustment for covariates. Black hole sign (aOR, 1.52 [1.10-2.11]; P=0.012), hypodensities (aOR, 1.37 [1.05-1.78]; P=0.019), and island sign (aOR, 2.59 [1.21-5.55]; P=0.014) were significant predictors of poor functional outcome. Tranexamic acid reduced the risk of hematoma expansion (aOR, 0.77 [0.63-0.94]; P=0.010), but there was no significant interaction between the presence of noncontrast computed tomography signs and benefit of tranexamic acid on hematoma expansion and functional outcome (P interaction all >0.05). Conclusions- Blend sign, black hole sign, and hypodensities predict hematoma expansion while black hole sign, hypodensities, and island signs predict poor functional outcome. Noncontrast computed tomography signs did not predict a better response to tranexamic acid. Clinical Trial Registration- URL: https://www.isrctn.com. Unique identifier: ISRCTN93732214.
    Matched MeSH terms: Cerebral Hemorrhage/drug therapy*
  6. Dineen RA, Pszczolkowski S, Flaherty K, Law ZK, Morgan PS, Roberts I, et al.
    BMJ Open, 2018 02 03;8(2):e019930.
    PMID: 29431141 DOI: 10.1136/bmjopen-2017-019930
    OBJECTIVES: To test whether administration of the antifibrinolytic drug tranexamic acid (TXA) in patients with spontaneous intracerebral haemorrhage (SICH) leads to increased prevalence of diffusion-weighted MRI-defined hyperintense ischaemic lesions (primary hypothesis) or reduced perihaematomal oedema volume, perihaematomal diffusion restriction and residual MRI-defined SICH-related tissue damage (secondary hypotheses).

    DESIGN: MRI substudy nested within the double-blind randomised controlled Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage (TICH)-2 trial (ISRCTN93732214).

    SETTING: International multicentre hospital-based study.

    PARTICIPANTS: Eligible adults consented and randomised in the TICH-2 trial who were also able to undergo MRI scanning. To address the primary hypothesis, a sample size of n=280 will allow detection of a 10% relative increase in prevalence of diffusion-weighted imaging (DWI) hyperintense lesions in the TXA group with 5% significance, 80% power and 5% imaging data rejection.

    INTERVENTIONS: TICH-2 MRI substudy participants will undergo MRI scanning using a standardised protocol at day ~5 and day ~90 after randomisation. Clinical assessments, randomisation to TXA or placebo and participant follow-up will be performed as per the TICH-2 trial protocol.

    CONCLUSION: The TICH-2 MRI substudy will test whether TXA increases the incidence of new DWI-defined ischaemic lesions or reduces perihaematomal oedema or final ICH lesion volume in the context of SICH.

    ETHICS AND DISSEMINATION: The TICH-2 trial obtained ethical approval from East Midlands - Nottingham 2 Research Ethics Committee (12/EM/0369) and an amendment to allow the TICH-2 MRI sub study was approved in April 2015 (amendment number SA02/15). All findings will be published in peer-reviewed journals. The primary outcome results will also be presented at a relevant scientific meeting.

    TRIAL REGISTRATION NUMBER: ISRCTN93732214; Pre-results.

    Matched MeSH terms: Cerebral Hemorrhage/drug therapy*
  7. Moullaali TJ, Wang X, Sandset EC, Woodhouse LJ, Law ZK, Arima H, et al.
    J Neurol Neurosurg Psychiatry, 2022 01;93(1):6-13.
    PMID: 34732465 DOI: 10.1136/jnnp-2021-327195
    OBJECTIVE: To summarise evidence of the effects of blood pressure (BP)-lowering interventions after acute spontaneous intracerebral haemorrhage (ICH).

    METHODS: A prespecified systematic review of the Cochrane Central Register of Controlled Trials, EMBASE and MEDLINE databases from inception to 23 June 2020 to identify randomised controlled trials that compared active BP-lowering agents versus placebo or intensive versus guideline BP-lowering targets for adults <7 days after ICH onset. The primary outcome was function (distribution of scores on the modified Rankin scale) 90 days after randomisation. Radiological outcomes were absolute (>6 mL) and proportional (>33%) haematoma growth at 24 hours. Meta-analysis used a one-stage approach, adjusted using generalised linear mixed models with prespecified covariables and trial as a random effect.

    RESULTS: Of 7094 studies identified, 50 trials involving 11 494 patients were eligible and 16 (32.0%) shared patient-level data from 6221 (54.1%) patients (mean age 64.2 [SD 12.9], 2266 [36.4%] females) with a median time from symptom onset to randomisation of 3.8 hours (IQR 2.6-5.3). Active/intensive BP-lowering interventions had no effect on the primary outcome compared with placebo/guideline treatment (adjusted OR for unfavourable shift in modified Rankin scale scores: 0.97, 95% CI 0.88 to 1.06; p=0.50), but there was significant heterogeneity by strategy (pinteraction=0.031) and agent (pinteraction<0.0001). Active/intensive BP-lowering interventions clearly reduced absolute (>6 ml, adjusted OR 0.75, 95%CI 0.60 to 0.92; p=0.0077) and relative (≥33%, adjusted OR 0.82, 95%CI 0.68 to 0.99; p=0.034) haematoma growth.

    INTERPRETATION: Overall, a broad range of interventions to lower BP within 7 days of ICH onset had no overall benefit on functional recovery, despite reducing bleeding. The treatment effect appeared to vary according to strategy and agent.

    PROSPERO REGISTRATION NUMBER: CRD42019141136.

    Matched MeSH terms: Cerebral Hemorrhage/drug therapy*
  8. Flaherty K, Bath PM, Dineen R, Law Z, Scutt P, Pocock S, et al.
    Trials, 2017 Dec 20;18(1):607.
    PMID: 29262841 DOI: 10.1186/s13063-017-2341-5
    RATIONALE: Aside from blood pressure lowering, treatment options for intracerebral haemorrhage remain limited and a proportion of patients will undergo early haematoma expansion with resultant significant morbidity and mortality. Tranexamic acid (TXA), an anti-fibrinolytic drug, has been shown to significantly reduce mortality in patients, who are bleeding following trauma, when given rapidly. TICH-2 is testing whether TXA is effective at improving outcome in spontaneous intracerebral haemorrhage (SICH).

    METHODS AND DESIGN: TICH-2 is a pragmatic, phase III, prospective, double-blind, randomised placebo-controlled trial. Two thousand adult (aged ≥ 18 years) patients with an acute SICH, within 8 h of stroke onset, will be randomised to receive TXA or the placebo control. The primary outcome is ordinal shift of modified Rankin Scale score at day 90. Analyses will be performed using intention-to-treat.

    RESULTS: This paper and its attached appendices describe the statistical analysis plan (SAP) for the trial and were developed and published prior to database lock and unblinding to treatment allocation. The SAP includes details of analyses to be undertaken and unpopulated tables which will be reported in the primary and key secondary publications. The database will be locked in early 2018, ready for publication of the results later in the same year.

    DISCUSSION: The SAP details the analyses that will be done to avoid bias arising from prior knowledge of the study findings. The trial will determine whether TXA can improve outcome after SICH, which currently has no definitive therapy.

    TRIAL REGISTRATION: ISRCTN registry, ID: ISRCTN93732214 . Registered on 17 January 2013.

    Matched MeSH terms: Cerebral Hemorrhage/drug therapy*
  9. Sprigg N, Flaherty K, Appleton JP, Al-Shahi Salman R, Bereczki D, Beridze M, et al.
    Health Technol Assess, 2019 07;23(35):1-48.
    PMID: 31322116 DOI: 10.3310/hta23350
    BACKGROUND: Tranexamic acid reduces death due to bleeding after trauma and postpartum haemorrhage.

    OBJECTIVE: The aim of the study was to assess if tranexamic acid is safe, reduces haematoma expansion and improves outcomes in adults with spontaneous intracerebral haemorrhage (ICH).

    DESIGN: The TICH-2 (Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage) study was a pragmatic, Phase III, prospective, double-blind, randomised placebo-controlled trial.

    SETTING: Acute stroke services at 124 hospitals in 12 countries (Denmark, Georgia, Hungary, Ireland, Italy, Malaysia, Poland, Spain, Sweden, Switzerland, Turkey and the UK).

    PARTICIPANTS: Adult patients (aged ≥ 18 years) with ICH within 8 hours of onset.

    EXCLUSION CRITERIA: Exclusion criteria were ICH secondary to anticoagulation, thrombolysis, trauma or a known underlying structural abnormality; patients for whom tranexamic acid was thought to be contraindicated; prestroke dependence (i.e. patients with a modified Rankin Scale [mRS] score > 4); life expectancy  4.5 hours after stroke onset. Pragmatic inclusion criteria led to a heterogeneous population of participants, some of whom had very large strokes. Although 12 countries enrolled participants, the majority (82.1%) were from the UK.

    CONCLUSIONS: Tranexamic acid did not affect a patient's functional status at 90 days after ICH, despite there being significant modest reductions in early death (by 7 days), haematoma expansion and SAEs, which is consistent with an antifibrinolytic effect. Tranexamic acid was safe, with no increase in thromboembolic events.

    FUTURE WORK: Future work should focus on enrolling and treating patients early after stroke and identify which participants are most likely to benefit from haemostatic therapy. Large randomised trials are needed.

    TRIAL REGISTRATION: Current Controlled Trials ISRCTN93732214.

    FUNDING: This project was funded by the National Institute for Health Research Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 23, No. 35. See the NIHR Journals Library website for further project information. The project was also funded by the Pragmatic Trials, UK, funding call and the Swiss Heart Foundation in Switzerland.

    Matched MeSH terms: Cerebral Hemorrhage/drug therapy*
  10. Ovesen C, Jakobsen JC, Gluud C, Steiner T, Law Z, Flaherty K, et al.
    Stroke, 2021 08;52(8):2629-2636.
    PMID: 34000834 DOI: 10.1161/STROKEAHA.120.032426
    BACKGROUND AND PURPOSE: The computed tomography angiography or contrast-enhanced computed tomography based spot sign has been proposed as a biomarker for identifying on-going hematoma expansion in patients with acute intracerebral hemorrhage. We investigated, if spot-sign positive participants benefit more from tranexamic acid versus placebo as compared to spot-sign negative participants.

    METHODS: TICH-2 trial (Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage) was a randomized, placebo-controlled clinical trial recruiting acutely hospitalized participants with intracerebral hemorrhage within 8 hours after symptom onset. Local investigators randomized participants to 2 grams of intravenous tranexamic acid or matching placebo (1:1). All participants underwent computed tomography scan on admission and on day 2 (24±12 hours) after randomization. In this sub group analysis, we included all participants from the main trial population with imaging allowing adjudication of spot sign status.

    RESULTS: Of the 2325 TICH-2 participants, 254 (10.9%) had imaging allowing for spot-sign adjudication. Of these participants, 64 (25.2%) were spot-sign positive. Median (interquartile range) time from symptom onset to administration of the intervention was 225.0 (169.0 to 310.0) minutes. The adjusted percent difference in absolute day-2 hematoma volume between participants allocated to tranexamic versus placebo was 3.7% (95% CI, -12.8% to 23.4%) for spot-sign positive and 1.7% (95% CI, -8.4% to 12.8%) for spot-sign negative participants (Pheterogenity=0.85). No difference was observed in significant hematoma progression (dichotomous composite outcome) between participants allocated to tranexamic versus placebo among spot-sign positive (odds ratio, 0.85 [95% CI, 0.29 to 2.46]) and negative (odds ratio, 0.77 [95% CI, 0.41 to 1.45]) participants (Pheterogenity=0.88).

    CONCLUSIONS: Data from the TICH-2 trial do not support that admission spot sign status modifies the treatment effect of tranexamic acid versus placebo in patients with acute intracerebral hemorrhage. The results might have been affected by low statistical power as well as treatment delay. Registration: URL: http://www.controlled-trials.com; Unique identifier: ISRCTN93732214.

    Matched MeSH terms: Cerebral Hemorrhage/drug therapy*
  11. Sprigg N, Flaherty K, Appleton JP, Al-Shahi Salman R, Bereczki D, Beridze M, et al.
    Lancet, 2018 May 26;391(10135):2107-2115.
    PMID: 29778325 DOI: 10.1016/S0140-6736(18)31033-X
    BACKGROUND: Tranexamic acid can prevent death due to bleeding after trauma and post-partum haemorrhage. We aimed to assess whether tranexamic acid reduces haematoma expansion and improves outcome in adults with stroke due to intracerebral haemorrhage.

    METHODS: We did an international, randomised placebo-controlled trial in adults with intracerebral haemorrhage from acute stroke units at 124 hospital sites in 12 countries. Participants were randomly assigned (1:1) to receive 1 g intravenous tranexamic acid bolus followed by an 8 h infusion of 1 g tranexamic acid or a matching placebo, within 8 h of symptom onset. Randomisation was done centrally in real time via a secure website, with stratification by country and minimisation on key prognostic factors. Treatment allocation was concealed from patients, outcome assessors, and all other health-care workers involved in the trial. The primary outcome was functional status at day 90, measured by shift in the modified Rankin Scale, using ordinal logistic regression with adjustment for stratification and minimisation criteria. All analyses were done on an intention-to-treat basis. This trial is registered with the ISRCTN registry, number ISRCTN93732214.

    FINDINGS: We recruited 2325 participants between March 1, 2013, and Sept 30, 2017. 1161 patients received tranexamic acid and 1164 received placebo; the treatment groups were well balanced at baseline. The primary outcome was assessed for 2307 (99%) participants. The primary outcome, functional status at day 90, did not differ significantly between the groups (adjusted odds ratio [aOR] 0·88, 95% CI 0·76-1·03, p=0·11). Although there were fewer deaths by day 7 in the tranexamic acid group (101 [9%] deaths in the tranexamic acid group vs 123 [11%] deaths in the placebo group; aOR 0·73, 0·53-0·99, p=0·0406), there was no difference in case fatality at 90 days (250 [22%] vs 249 [21%]; adjusted hazard ratio 0·92, 95% CI 0·77-1·10, p=0·37). Fewer patients had serious adverse events after tranexamic acid than after placebo by days 2 (379 [33%] patients vs 417 [36%] patients), 7 (456 [39%] vs 497 [43%]), and 90 (521 [45%] vs 556 [48%]).

    INTERPRETATION: Functional status 90 days after intracerebral haemorrhage did not differ significantly between patients who received tranexamic acid and those who received placebo, despite a reduction in early deaths and serious adverse events. Larger randomised trials are needed to confirm or refute a clinically significant treatment effect.

    FUNDING: National Institute of Health Research Health Technology Assessment Programme and Swiss Heart Foundation.

    Matched MeSH terms: Cerebral Hemorrhage/drug therapy*
  12. Ovesen C, Jakobsen JC, Gluud C, Steiner T, Law Z, Flaherty K, et al.
    BMC Res Notes, 2018 Jun 13;11(1):379.
    PMID: 29895329 DOI: 10.1186/s13104-018-3481-8
    OBJECTIVE: We present the statistical analysis plan of a prespecified Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage (TICH)-2 sub-study aiming to investigate, if tranexamic acid has a different effect in intracerebral haemorrhage patients with the spot sign on admission compared to spot sign negative patients. The TICH-2 trial recruited above 2000 participants with intracerebral haemorrhage arriving in hospital within 8 h after symptom onset. They were included irrespective of radiological signs of on-going haematoma expansion. Participants were randomised to tranexamic acid versus matching placebo. In this subgroup analysis, we will include all participants in TICH-2 with a computed tomography angiography on admission allowing adjudication of the participants' spot sign status.

    RESULTS: Primary outcome will be the ability of tranexamic acid to limit absolute haematoma volume on computed tomography at 24 h (± 12 h) after randomisation among spot sign positive and spot sign negative participants, respectively. Within all outcome measures, the effect of tranexamic acid in spot sign positive/negative participants will be compared using tests of interaction. This sub-study will investigate the important clinical hypothesis that spot sign positive patients might benefit more from administration of tranexamic acid compared to spot sign negative patients. Trial registration ISRCTN93732214 ( http://www.isrctn.com ).

    Matched MeSH terms: Cerebral Hemorrhage/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links