Displaying all 4 publications

Abstract:
Sort:
  1. Zolio L, Lim KY, McKenzie JE, Yan MK, Estee M, Hussain SM, et al.
    Osteoarthritis Cartilage, 2021 08;29(8):1096-1116.
    PMID: 33971205 DOI: 10.1016/j.joca.2021.03.021
    OBJECTIVE: To determine the prevalence of neuropathic-like pain (NP) and pain sensitization (PS) defined by self-report questionnaires in knee and hip osteoarthritis, and whether prevalence is potentially explained by disease-severity or affected joint.

    DESIGN: MEDLINE, EMBASE, CINAHL were systematically searched (1990-April 2020) for studies describing the prevalence of NP and PS in knee and hip osteoarthritis using self-report questionnaires. Random-effects meta-analysis was performed. Statistical heterogeneity between studies and sub-groups (affected joint and population source as a proxy for disease severity) was assessed (I2 statistic and the Chi-squared test).

    RESULTS: From 2,706 non-duplicated references, 39 studies were included (2011-2020). Thirty-six studies reported on knee pain and six on hip pain. For knee osteoarthritis, the pooled prevalence of NP was: using PainDETECT, possible NP(score ≥13) 40% (95%CI 32-48%); probable NP(score >18) 20% (95%CI 15-24%); using Self-Report Leeds Assessment of Neuropathic Symptoms and Signs, 32% (95%CI 26-38%); using Douleur Neuropathique (DN4) 41% (95% CI 24-59%). The prevalence of PS using Central Sensitization Inventory (CSI) was 36% (95% CI 12-59%). For hip osteoarthritis, the pooled prevalence of NP was: using PainDETECT, possible NP 29% (95%CI 22-37%%); probable NP 9% (95%CI 6-13%); using DN4 22% (95%CI 12-31%) in one study. The prevalence of possible NP pain was higher at the knee (40%) than the hip (29%) (difference 11% (95% CI 0-22%), P = 0.05).

    CONCLUSIONS: Using self-report questionnaire tools, NP was more prevalent in knee than hip osteoarthritis. The prevalence of NP in knee and hip osteoarthritis were similar for each joint regardless of study population source or tool used. Whether defining NP using self-report questionnaires enables more effective targeted therapy in osteoarthritis requires investigation.

    Matched MeSH terms: Central Nervous System Sensitization/physiology*
  2. Huang P, Kuo PH, Lee MT, Chiou LC, Fan PC
    Front Pharmacol, 2018;9:1095.
    PMID: 30319425 DOI: 10.3389/fphar.2018.01095
    Background: Valproic acid (VPA) and topiramate (TPM), initially developed as antiepileptics, are approved for migraine prophylaxis in adults but not children. The differences in their antimigraine mechanism(s) by age remain unclear. Methods: A migraine model induced by intra-cisternal (i.c.) capsaicin instillation in pediatric (4-5 weeks) and adult (8-9 weeks) rats was pretreated with VPA (30, 100 mg/kg) or TPM (10, 30, 100 mg/kg). Noxious meningeal stimulation by the irritant capsaicin triggered trigeminovascular system (TGVS) activation mimicking migraine condition, which were assessed peripherally by the depletion of calcitonin gene-related peptide (CGRP) in sensory nerve fibers of the dura mater, the increased CGRP immunoreactivity at trigeminal ganglia (TG) and centrally by the number of c-Fos-immunoreactive (c-Fos-ir) neurons in the trigeminocervical complex (TCC). Peripherally, CGRP released from dural sensory nerve terminals of TG triggered pain signal transmission in the primary afferent of trigeminal nerve, which in turn caused central sensitization of the TGVS due to TCC activation and hence contributed to migraine. Results: In the VPA-treated group, the central responsiveness expressed by reducing the number of c-Fos-ir neurons, which had been increased by i.c. capsaicin, was significant in pediatric, but not adult, rats. Inversely, VPA was effective in peripheral inhibition of elevated CGRP immunoreactivity in the TG and CGRP depletion in the dura mater of adult, but not pediatric, rats. In TPM group, the central responsiveness was significant in both adult and pediatric groups. Peripherally, TPM significantly inhibited capsaicin-induced CGRP expression of TG in adult, but not pediatric, rats. Interestingly, the capsaicin-induced depletion of CGRP in dura was significantly rescued by TPM at high doses in adults, but at low dose in pediatric group. Conclusion: These results suggest VPA exerted peripheral inhibition in adult, but central suppression in pediatric migraine-rats. In contrast, TPM involves both central and peripheral inhibition of migraine with an optimal therapeutic window in both ages. These findings may clarify the age-dependent anti-migraine mechanism of VPA and TPM, which may guide the development of new pediatric anti-migraine drugs in the future.
    Matched MeSH terms: Central Nervous System Sensitization
  3. Kaka U, Saifullah B, Abubakar AA, Goh YM, Fakurazi S, Kaka A, et al.
    BMC Vet Res, 2016 Sep 9;12(1):198.
    PMID: 27612660
    Central sensitization is a potential severe consequence of invasive surgical procedures. It results in postoperative and potentially chronic pain enhancement. It results in postoperative pain enhancement; clinically manifested as hyperalgesia and allodynia. N-methyl-D-aspartate (NMDA) receptor plays a crucial role in the mechanism of central sensitisation. Ketamine is most commonly used NMDA-antagonist in human and veterinary practice. However, the antinociceptive serum concentration of ketamine is not yet properly established in dogs. Six dogs were used in a crossover design, with one week washout period. Treatments consisted of: 1) 0.5 mg/kg ketamine followed by continuous rate infusion (CRI) of 30 μg/kg/min; 2) 0.5 mg/kg ketamine followed by CRI of 30 μg/kg/min and lidocaine (2 mg/kg followed by CRI of 100 μg/kg/min); and 3) 0.5 mg/kg ketamine followed by CRI of 50 μg/kg/min. The infusion was administered up to 120 min. Nociceptive thresholds and ketamine serum concentrations were measured before drug administration, and at 5, 10, 20, 40, 60, 90, 120, 140 and 160 min after the start of infusion.
    Matched MeSH terms: Central Nervous System Sensitization
  4. Ahmad AH, Ismail Z, Than M, Ahmad A
    Malays J Med Sci, 2008 Jan;15(1):13-22.
    PMID: 22589610 MyJurnal
    The potential of ketamine, an N-methyl D-aspartate (NMDA) receptor antagonist, in preventing central sensitization has led to numerous studies. Ketamine is increasingly used in the clinical setting to provide analgesia and prevent the development of central sensitization at subanaesthetic doses. However, few studies have looked into the potential of ketamine in combination with stress-induced analgesia. This study looks at the effects of swim stress, which is mediated by opioid receptor, on ketamine analgesia using formalin test. Morphine is used as the standard analgesic for comparison. Adult male Sprague-Dawley rats were assigned to 6 groups: 3 groups (stressed groups) were given saline 1ml/kg intraperitoneally (ip), morphine 10mg/kg ip or ketamine 5mg/kg ip and subjected to swim stress; 3 more groups (non-stressed groups) were given the same drugs without swim stress. Formalin test, which involved formalin injection as the pain stimulus and the pain score recorded over time, was performed on all rats ten minutes after cessation of swimming or 30 minutes after injection of drugs. Combination of swim stress and ketamine resulted in complete analgesia in the formalin test which was significantly different from ketamine alone (p<0.05) and saline with stress (p<0.01). There is no significant difference between ketamine stressed and morphine stressed. These results indicate that ketamine and swim stress act synergistically to produce profound analgesia in the formalin test. This suggests that in the clinical setting, under stressful situations such as operative stress, ketamine is capable of producing profound analgesia at a subanaesthetic dose.
    Matched MeSH terms: Central Nervous System Sensitization
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links