Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Wong PF, Abubakar S
    J Trace Elem Med Biol, 2008;22(3):242-7.
    PMID: 18755400 DOI: 10.1016/j.jtemb.2008.03.008
    Prostate cancer is an age-related disease that is linked to the inability of prostate cells to accumulate zinc following transformation. It is shown in the present study that the basal percentage of normal prostate cells expressing senescence-associated beta-galactosidase (SA-beta-gal) is higher than that of the cancer cells. In the presence of high zinc in the cell culture medium, the percentage of normal prostate cells expressing the SA-beta-gal increased but not that of the cancer cells. Increased intracellular zinc occurs in the prostate cancer cells treated with supraphysiologic concentration of zinc but it does not induce senescence or decrease the telomerase activities in these cells. Senescence, however, occurred when the prostate cancer cells DNA is damaged by irradiation. These findings suggest that prostate cancer cells are insensitive to the senescence-inducing effects of zinc but the cancer cells retain the capacity to undergo senescence through other pathways.
    Matched MeSH terms: Cell Shape/drug effects
  2. Ishak R, Hallett MB
    Biochem Biophys Res Commun, 2018 12 02;506(4):1065-1070.
    PMID: 30409431 DOI: 10.1016/j.bbrc.2018.10.174
    It has been proposed that Ca2+ activation of calpain-1 is an important trigger for rapid cell spreading by neutrophils. In this paper, we have investigated this by assessing the ex vivo functioning of neutrophils from calpain-1 null mice, Calpain-1 null neutrophils failed to migrate through TNF-activated endothelial monolayers. The failure to transmigrate through endothelial monolayers was therefore unlikely to be due to a failure of chemotaxis as chemotaxis by adherent calpain-1 null neutrophils towards fMLP was unpaired. In contrast, the capacity of calpian-1 neutrophils to spontaneously spread was limited to smaller diameters than for wild type cells. Photolytic uncaging of IP3 with Individual wild type neutrophils resulted in a large Ca2+ signal and rapid cell spreading. In contrast, calpain-1 neutrophils failed to spread in response to the IP3-induced Ca2+ signal. This work has therefore demonstrated that the presence of calpain-1 was required for effective rapid cell spreading by neutrophils.
    Matched MeSH terms: Cell Shape*
  3. Chan JY, Ahmad Kayani AB, Md Ali MA, Kok CK, Ramdzan Buyong M, Hoe SLL, et al.
    Electrophoresis, 2019 10;40(20):2728-2735.
    PMID: 31219180 DOI: 10.1002/elps.201800442
    This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA-MB-231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA-MB-231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA-MB-231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 Vpp at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field.
    Matched MeSH terms: Cell Shape/physiology*
  4. Al Musawi MS, Jaafar MS, Al-Gailani B, Ahmed NM, Suhaimi FM
    Lasers Med Sci, 2017 Dec;32(9):2089-2095.
    PMID: 28967036 DOI: 10.1007/s10103-017-2340-5
    The study of the effects of low-level laser (LLL) radiation on blood is important for elucidating the mechanisms behind the interaction of LLL radiation and biologic tissues. Different therapy methods that involve blood irradiation have been developed and used for clinical purposes with beneficial effects. The aim of this study was to compare the effects of different irradiation protocols using a diode-pumped solid-state LLL (λ = 405 nm) on samples of human blood by measuring the erythrocyte sedimentation rate (ESR). Human blood samples were obtained through venipuncture into tubes containing EDTA as an anticoagulant. Every sample was divided into two equal aliquots to be used as an irradiated sample and a non-irradiated control sample. The irradiated aliquot was subjected to a laser beam with a wavelength of 405 nm and an energy density of 72 J/cm2. The radiation source had a fixed irradiance of 30 mW/cm2. The ESR change was observed for three different experimental protocols: irradiated whole blood, irradiated red blood cells (RBCs) samples re-suspended in non-irradiated blood plasma, and non-irradiated RBCs re-suspended in irradiated blood plasma. The ESR values were measured after laser irradiation and compared with the non-irradiated control samples. Irradiated blood plasma in which non-radiated RBCs were re-suspended was found to result in the largest ESR decrease for healthy human RBCs, 51%, when compared with RBCs re-suspended in non-irradiated blood plasma. The decrease in ESR induced by LLL irradiation of the plasma alone was likely related to changes in the plasma composition and an increase in the erythrocyte zeta potential upon re-suspension of the RBCs in the irradiated blood plasma.
    Matched MeSH terms: Cell Shape/radiation effects
  5. Ng WK, Saiful Yazan L, Yap LH, Wan Nor Hafiza WA, How CW, Abdullah R
    Biomed Res Int, 2015;2015:263131.
    PMID: 25632388 DOI: 10.1155/2015/263131
    Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI) lower than 0.25. The zeta potential of TQ-NLC was greater than -30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P < 0.05). TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells.
    Matched MeSH terms: Cell Shape/drug effects
  6. Lim JJ, Ngah WZ, Mouly V, Abdul Karim N
    Oxid Med Cell Longev, 2013;2013:978101.
    PMID: 24349615 DOI: 10.1155/2013/978101
    Skeletal muscle satellite cells are heavily involved in the regeneration of skeletal muscle in response to the aging-related deterioration of the skeletal muscle mass, strength, and regenerative capacity, termed as sarcopenia. This study focused on the effect of tocotrienol rich fraction (TRF) on regenerative capacity of myoblasts in stress-induced premature senescence (SIPS). The myoblasts was grouped as young control, SIPS-induced, TRF control, TRF pretreatment, and TRF posttreatment. Optimum dose of TRF, morphological observation, activity of senescence-associated β-galactosidase (SA-β-galactosidase), and cell proliferation were determined. 50 μg/mL TRF treatment exhibited the highest cell proliferation capacity. SIPS-induced myoblasts exhibit large flattened cells and prominent intermediate filaments (senescent-like morphology). The activity of SA-β-galactosidase was significantly increased, but the proliferation capacity was significantly reduced as compared to young control. The activity of SA-β-galactosidase was significantly reduced and cell proliferation was significantly increased in the posttreatment group whereas there was no significant difference in SA-β-galactosidase activity and proliferation capacity of pretreatment group as compared to SIPS-induced myoblasts. Based on the data, we hypothesized that TRF may reverse the myoblasts aging through replenishing the regenerative capacity of the cells. However, further investigation on the mechanism of TRF in reversing the myoblast aging is needed.
    Matched MeSH terms: Cell Shape/drug effects
  7. Almabhouh FA, Singh HJ
    Andrologia, 2018 Feb;50(1).
    PMID: 28497500 DOI: 10.1111/and.12814
    This study examines the effect of melatonin on leptin-induced changes in transition of histone to protamine in adult rats during spermatogenesis. Twelve-week-old Sprague-Dawley rats were randomised into control, leptin-, leptin-melatonin-10-, leptin-melatonin-20- and melatonin-10-treated groups with six rats per group. Leptin was given via intraperitoneal injections (i.p.) daily for 42 days (60 μg/kg body weight). Rats in the leptin- and melatonin-treated groups were given either 10 or 20 mg day-1  kg-1 body weight of leptin in drinking water. Melatonin-10-treated group received only 10 mg of melatonin day-1  kg-1 body weight in drinking water for 42 days. Control rats received 0.1 ml of 0.9% saline. Upon completion of the treatment, sperm count, morphology and histone-to-protamine ratio were estimated. Gene expression of HAT, HDAC1, HDAC2, H2B, H2A, H1, PRM1, PRM2, TNP1 and TNP2 was determined. Data were analysed using ANOVA. Sperm count was significantly lower, whereas the fraction of spermatozoa with abnormal morphology, the ratio of histone-to-protamine transition and the expressions of HAT, HDAC1, HDAC2, H2B, H2A, H1, PRM1 were significantly higher in leptin-treated rats than those in controls or melatonin-treated rats. It appears that exogenous leptin administration adversely affects histone-to-protamine transition, which is prevented by concurrent administration of melatonin.
    Matched MeSH terms: Cell Shape/drug effects
  8. Awang N, Kamaludin NF, Hamid A, Mokhtar NW, Rajab NF
    Pak J Biol Sci, 2012 Sep 01;15(17):833-8.
    PMID: 24163967
    Studies on the discovery of new cancer treatment by using metal-based compounds such as tin (Sn) has now greatly being synthesized and evaluated to identify their effectiveness and suitability to be developed as a new anticancer drug.

    APPROACH: This study was carried out to evaluate the cytotoxicity of triphenyltin(lV) methylisopropyldithiocarbamate (compound 1) and triphenyltin(IV) ethylisopropyldithiocarbamate (compound (2) on chronic myelogenus leukemia cells. The determination of their cytotoxicity (IC50) at different time of exposure and concentration was carried out through the employment of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay.

    RESULTS: The IC50 values obtained for compound 1 and 2 following treatment at 24, 48 and 72 h were 0.660, 0.223, 0.370 microM and 0.677, 0.306, 0.360 microM, respectively. Cell morphological changes such as apoptotic and necrotic features were also been observed.

    CONCLUSION: The compounds tested were found to give cytotoxic effect against chronic myelogenus leukemia (K-562) cell at a micromolar dose. Thus, further study on their specific mechanism of actions in the human cells should be carried out to elucidate their potential as an anticancer agent.

    Matched MeSH terms: Cell Shape/drug effects
  9. Makpol S, Durani LW, Chua KH, Mohd Yusof YA, Ngah WZ
    J Biomed Biotechnol, 2011;2011:506171.
    PMID: 21541185 DOI: 10.1155/2011/506171
    This study determined the molecular mechanisms of tocotrienol-rich fraction (TRF) in preventing cellular senescence of human diploid fibroblasts (HDFs). Primary culture of HDFs at various passages were incubated with 0.5 mg/mL TRF for 24 h. Telomere shortening with decreased telomerase activity was observed in senescent HDFs while the levels of damaged DNA and number of cells in G(0)/G(1) phase were increased and S phase cells were decreased. Incubation with TRF reversed the morphology of senescent HDFs to resemble that of young cells with decreased activity of SA-β-gal, damaged DNA, and cells in G(0)/G(1) phase while cells in the S phase were increased. Elongated telomere length and restoration of telomerase activity were observed in TRF-treated senescent HDFs. These findings confirmed the ability of tocotrienol-rich fraction in preventing HDFs cellular ageing by restoring telomere length and telomerase activity, reducing damaged DNA, and reversing cell cycle arrest associated with senescence.
    Matched MeSH terms: Cell Shape/drug effects
  10. Lay MM, Karsani SA, Malek SN
    Biomed Res Int, 2014;2014:468157.
    PMID: 24579081 DOI: 10.1155/2014/468157
    2,4',6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins.
    Matched MeSH terms: Cell Shape/drug effects
  11. Lim WL, Soga T, Parhar IS
    Cell Tissue Res, 2014 Feb;355(2):409-23.
    PMID: 24374911 DOI: 10.1007/s00441-013-1765-9
    The migration of gonadotropin-releasing hormone (GnRH) neurons from the olfactory placode to the preoptic area (POA) from embryonic day 13 is important for successful reproduction during adulthood. Whether maternal glucocorticoid exposure alters GnRH neuronal morphology and number in the offspring is unknown. This study determines the effect of maternal dexamethasone (DEX) exposure on enhanced green fluorescent protein (EGFP) driven by GnRH promoter neurons (TG-GnRH) in transgenic rats dual-labelled with GnRH immunofluorescence (IF-GnRH). The TG-GnRH neurons were examined in intact male and female rats at different postnatal ages, as a marker for GnRH promoter activity. Pregnant females were subcutaneously injected with DEX (0.1 mg/kg) or vehicle daily during gestation days 13-20 to examine the number of GnRH neurons in P0 male offspring. The total number of TG-GnRH neurons and TG-GnRH/IF-GnRH neuronal ratio increased from P0 and P5 stages to P47-52 stages, suggesting temporal regulation of GnRH promoter activity during postnatal development in intact rats. In DEX-treated P0 males, the number of IF-GnRH neurons decreased within the medial septum, organum vasculosom of the lamina terminalis (OVLT) and anterior hypothalamus. The percentage of TG-GnRH neurons with branched dendritic structures decreased in the OVLT of DEX-P0 males. These results suggest that maternal DEX exposure affects the number and dendritic development of early postnatal GnRH neurons in the OVLT/POA, which may lead to altered reproductive functions in adults.
    Matched MeSH terms: Cell Shape/drug effects
  12. Al-Qubaisi MS, Rasedee A, Flaifel MH, Ahmad SH, Hussein-Al-Ali S, Hussein MZ, et al.
    Int J Nanomedicine, 2013;8:2497-508.
    PMID: 23885175 DOI: 10.2147/IJN.S42367
    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6-1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells.
    Matched MeSH terms: Cell Shape/drug effects
  13. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    Molecules, 2012;17(3):2939-54.
    PMID: 22402764 DOI: 10.3390/molecules17032939
    Despite the progress in colon cancer treatment, relapse is still a major obstacle. Hence, new drugs or drug combinations are required in the battle against colon cancer. α-Mangostin and betulinic acid (BA) are cytotoxic compounds that work by inducing the mitochondrial apoptosis pathway, and cisplatin is one of the most potent broad spectrum anti-tumor agents. This study aims to investigate the enhancement of BA cytotoxicity by α-mangostin, and the cytoprotection effect of α-mangostin and BA on cisplatin-induced cytotoxicity on HCT 116 human colorectal carcinoma cells. Cytotoxicity was investigated by the XTT cell proliferation test, and the apoptotic effects were investigated on early and late markers including caspases-3/7, mitochondrial membrane potential, cytoplasmic shrinkage, and chromatin condensation. The effect of α-mangostin on four signalling pathways was also investigated by the luciferase assay. α-Mangostin and BA were more cytotoxic to the colon cancer cells than to the normal colonic cells, and both compounds showed a cytoprotective effect against cisplatin-induced cytotoxicity. On the other hand, α-mangostin enhanced the cytotoxic and apoptotic effects of BA. Combination therapy hits multiple targets, which may improve the overall response to the treatment, and may reduce the likelihood of developing drug resistance by the tumor cells. Therefore, α-mangostin and BA may provide a novel combination for the treatment of colorectal carcinoma. The cytoprotective effect of the compounds against cisplatin-induced cytotoxicity may find applications as chemopreventive agents against carcinogens, irradiation and oxidative stress, or to neutralize cisplatin side effects.
    Matched MeSH terms: Cell Shape/drug effects
  14. Syam S, Abdul AB, Sukari MA, Mohan S, Abdelwahab SI, Wah TS
    Molecules, 2011 Aug 23;16(8):7155-70.
    PMID: 21862957 DOI: 10.3390/molecules16087155
    Murraya koenigii is an edible herb widely used in folk medicine. Here we report that girinimbine, a carbazole alkaloid isolated from this plant, inhibited the growth and induced apoptosis in human hepatocellular carcinoma, HepG2 cells. The MTT and LDH assay results showed that girinimbine decreased cell viability and increased cytotoxicity in a dose-and time-dependent manner selectively. Girinimbine-treated HepG2 cells showed typical morphological features of apoptosis, as observed from normal inverted microscopy and Hoechst 33342 assay. Furthermore, girinimbine treatment resulted in DNA fragmentation and elevated levels of caspase-3 in HepG2 cells. Girinimbine treatment also displayed a time-dependent accumulation of the Sub-G(0)/G(1) peak (hypodiploid) and caused G(0)/G(1)-phase arrest. Together, these results demonstrated for the first time that girinimbine could effectively induce programmed cell death in HepG2 cells and suggests the importance of conducting further investigations in preclinical human hepatocellular carcinoma models, especially on in vivo efficacy, to promote girinimbine for use as an anticancer agent against hepatocellular carcinoma.
    Matched MeSH terms: Cell Shape/drug effects
  15. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    PMID: 22221649 DOI: 10.1186/1477-5751-11-3
    Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs.
    Matched MeSH terms: Cell Shape/drug effects
  16. Al-Masawa ME, Wan Kamarul Zaman WS, Chua KH
    Sci Rep, 2020 12 09;10(1):21583.
    PMID: 33299022 DOI: 10.1038/s41598-020-78395-y
    The scarcity of chondrocytes is a major challenge for cartilage tissue engineering. Monolayer expansion is necessary to amplify the limited number of chondrocytes needed for clinical application. Growth factors are often added to improve monolayer culture conditions, promoting proliferation, and enhancing chondrogenesis. Limited knowledge on the biosafety of the cell products manipulated with growth factors in culture has driven this study to evaluate the impact of growth factor cocktail supplements in chondrocyte culture medium on chondrocyte genetic stability and tumorigenicity. The growth factors were basic fibroblast growth factor (b-FGF), transforming growth factor β2 (TGF β2), insulin-like growth factor 1 (IGF-1), insulin-transferrin-selenium (ITS), and platelet-derived growth factor (PD-GF). Nasal septal chondrocytes cultured in growth factor cocktail exhibited a significantly high proliferative capacity. Comet assay revealed no significant DNA damage. Flow cytometry showed chondrocytes were mostly at G0-G1 phase, exhibiting normal cell cycle profile with no aneuploidy. We observed a decreased tumour suppressor genes' expression (p53, p21, pRB) and no TP53 mutations or tumour formation after 6 months of implantation in nude mice. Our data suggest growth factor cocktail has a low risk of inducing genotoxic and tumorigenic effects on chondrocytes up to passage 6 with 16.6 population doublings. This preclinical tumorigenicity and genetic instability evaluation is crucial for further clinical works.
    Matched MeSH terms: Cell Shape/drug effects
  17. Almabhouh FA, Osman K, Ibrahim SF, Gupalo S, Gnanou J, Ibrahim E, et al.
    Asian J Androl, 2016 10 18;19(6):647-654.
    PMID: 27748315 DOI: 10.4103/1008-682X.183379
    This study examined the effects of melatonin on leptin-induced changes in sperm parameters in adult rats. Five groups of Sprague-Dawley rats were treated with either leptin or leptin and melatonin or melatonin for 6 weeks. Leptin was given daily via the intraperitoneal route (60 μg kg-1 body weight) and melatonin was given in drinking water (10 mg kg-1 or 20 mg kg-1 body weight per day). Upon completion, sperm count, sperm morphology, 8-hydroxy-2-deoxyguanosine, Comet assay, TUNEL assay, gene expression profiles of antioxidant enzymes, respiratory chain reaction enzymes, DNA damage, and apoptosis genes were estimated. Data were analyzed using ANOVA. Sperm count was significantly lower whereas the fraction of sperm with abnormal morphology, the level of 8-hydroxy-2-deoxyguanosine, and sperm DNA fragmentation were significantly higher in rats treated with leptin only. Microarray analysis revealed significant upregulation of apoptosis-inducing factor, histone acetyl transferase, respiratory chain reaction enzyme, cell necrosis and DNA repair genes, and downregulation of antioxidant enzyme genes in leptin-treated rats. Real-time polymerase chain reaction showed significant decreases in glutathione peroxidase 1 expression with increases in the expression of apoptosis-inducing factor and histone acetyl transferase in leptin-treated rats. There was no change in the gene expression of caspase-3 (CASP-3). In conclusion, the adverse effects of leptin on sperm can be prevented by concurrent melatonin administration.
    Matched MeSH terms: Cell Shape/drug effects
  18. Aslam Khan MU, Haider A, Abd Razak SI, Abdul Kadir MR, Haider S, Shah SA, et al.
    J Tissue Eng Regen Med, 2021 04;15(4):322-335.
    PMID: 33432773 DOI: 10.1002/term.3168
    The importance of bone scaffolds has increased many folds in the last few years; however, during bone implantation, bacterial infections compromise the implantation and tissue regeneration. This work is focused on this issue while not compromising on the properties of a scaffold for bone regeneration. Biocomposite scaffolds (BS) were fabricated via the freeze-drying technique. The samples were characterized for structural changes, surface morphology, porosity, and mechanical properties through spectroscopic (Fourier transform-infrared [FT-IR]), microscopic (scanning electron microscope [SEM]), X-ray (powder X-ray diffraction and energy-dispersive X-ray), and other analytical (Brunauer-Emmett-Teller, universal testing machine Instron) techniques. Antibacterial, cellular, and hemocompatibility assays were performed using standard protocols. FT-IR confirmed the interactions of all the components. SEM illustrated porous and interconnected porous morphology. The percentage porosity was in the range of 49.75%-67.28%, and the pore size was 215.65-470.87 µm. The pore size was perfect for cellular penetration. Thus, cells showed significant proliferation onto these scaffolds. X-ray studies confirmed the presence of nanohydroxyapatite and graphene oxide (GO). The cell viability was 85%-98% (BS1-BS3), which shows no significant toxicity of the biocomposite. Furthermore, the biocomposites exhibited better antibacterial activity, no effect on the blood clotting (normal in vitro blood clotting), and less than 5% hemolysis. The ultimate compression strength for the biocomposites increased from 4.05 to 7.94 with an increase in the GO content. These exciting results revealed that this material has the potential for possible application in bone tissue engineering.
    Matched MeSH terms: Cell Shape/drug effects
  19. C SK, M S, K R
    Int J Biol Macromol, 2016 Nov;92:682-693.
    PMID: 27456125 DOI: 10.1016/j.ijbiomac.2016.07.062
    Response Surface Methodology (RSM) was used to optimize the parameters for microwave-assisted extraction of polysaccharides from Cyphomandra betacea. The results showed a good fit with a second-order polynomial equation that was statistically acceptable at P<0.05. Optimal conditions for the extraction of polysaccharides were: extraction time, 2h; microwave power, 400W; extraction temperature, 60°C; and ratio of raw material to water 1:40 (g/mL). Under the optimized conditions, the yield of polysaccharides was found to be relatively high (about 36.52%). The in vitro biological activities of antioxidant and antitumor were evaluated. The IC50 value of polysaccharides was found to be 3mg/mL. The percentage of Cell viability was determined by MTT assay. Our results showed that polysaccharides inhibited proliferation of MCF-7 (Breast carcinoma), A549 (Human lung carcinoma) and HepG2 (Liver carcinoma) with an IC50 of 0.23mg/mL, 0.17mg/mL and 0.62mg/mL respectively after 48h incubation. Polysaccharides were shown to promote apoptosis as seen in the nuclear morphological examination study using acridine orange (AO) and ethidium bromide (EB) staining. This is the first report on the effects of polysaccharides extracted from Cyphomandra betacea which exhibited stronger antioxidant and antitumor activities.
    Matched MeSH terms: Cell Shape/drug effects
  20. Ng CT, Fong LY, Sulaiman MR, Moklas MA, Yong YK, Hakim MN, et al.
    J Interferon Cytokine Res, 2015 Jul;35(7):513-22.
    PMID: 25830506 DOI: 10.1089/jir.2014.0188
    Interferon-gamma (IFN-γ) is known to potentiate the progression of inflammatory diseases, such as inflammatory bowel disease and atherosclerosis. IFN-γ has been found to disrupt the barrier integrity of epithelial and endothelial cell both in vivo and in vitro. However, the mechanisms of IFN-γ underlying increased endothelial cell permeability have not been extensively elucidated. We reported that IFN-γ exhibits a biphasic nature in increasing endothelial permeability. The changes observed in the first phase (4-8 h) involve cell retraction and rounding in addition to condensed peripheral F-actin without a significant change in the F-/G-actin ratio. However, cell elongation, stress fiber formation, and an increased F-/G-actin ratio were noticed in the second phase (16-24 h). Consistent with our finding from the permeability assay, IFN-γ induced the formation of intercellular gaps in both phases. A delayed phase of increased permeability was observed at 12 h, which paralleled the onset of cell elongation, stress fiber formation, and increased F-/G-actin ratio. In addition, IFN-γ stimulated p38 mitogen-activated protein (MAP) kinase phosphorylation over a 24 h period. Inhibition of p38 MAP kinase by SB203580 prevented increases in paracellular permeability, actin rearrangement, and increases in the F-/G-actin ratio caused by IFN-γ. Our results suggest that p38 MAP kinase is activated in response to IFN-γ and causes actin rearrangement and altered cell morphology, which in turn mediates endothelial cell hyperpermeability. The F-/G-actin ratio might be involved in the regulation of actin distribution and cell morphology rather than the increased permeability induced by IFN-γ.
    Matched MeSH terms: Cell Shape/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links