Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Mohd Yasin ZN, Mohd Idrus FN, Hoe CH, Yvonne-Tee GB
    Differentiation, 2022;128:67-82.
    PMID: 36370526 DOI: 10.1016/j.diff.2022.10.001
    Macrophages derived from human monocytic leukemia THP-1 cell line are often used as the alternative of human primary macrophage. However, the polarization method of THP-1 to macrophages varies between different laboratories, which may unknowingly affect the relevance of research output across research groups. In this regard, a systematic search was developed in Pubmed, BioOne, Scopus, and Science Direct to identify articles focusing on THP-1 polarization into M1 and M2 macrophages. All selected articles were read and discussed by two independent reviewers. The selection process was based on selected keywords on the title, abstract and full-text level. A total of 85 articles were selected and categorized based on the field of studies, method of THP-1 differentiation, and markers or genes expressed upon differentiation. THP-1 derived macrophages were mainly used together with primary monocyte-derived macrophages in cellular inflammation studies, while it was commonly employed alone in cancer research. THP-1 derived macrophages are also of paramount importance in biomaterials studies to prevent unfavorable immune responses in-vivo. We explored various methods of THP-1 differentiation and suggested several common genes encountered to characterize M1 and M2 macrophages differentiated from THP-1. The systematic review highlights the relevance of using THP-1 derived macrophage as a useful alternative to primary macrophage. Although it is not possible to derive a standard method of THP-1 polarization into M1 and M2 macrophages from this review, it may lead researchers to obtain reproducible polarization protocol based on commonly used stimulants and markers of differentiation.
    Matched MeSH terms: Cell Differentiation/genetics
  2. Khotib J, Marhaeny HD, Miatmoko A, Budiatin AS, Ardianto C, Rahmadi M, et al.
    J Biomol Struct Dyn, 2023 Nov;41(19):10257-10276.
    PMID: 36420663 DOI: 10.1080/07391102.2022.2148749
    Osteoblasts, cells derived from mesenchymal stem cells (MSCs) in the bone marrow, are cells responsible for bone formation and remodeling. The differentiation of osteoblasts from MSCs is triggered by the expression of specific genes, which are subsequently controlled by pro-osteogenic pathways. Mature osteoblasts then differentiate into osteocytes and are embedded in the bone matrix. Dysregulation of osteoblast function can cause inadequate bone formation, which leads to the development of bone disease. Various key molecules are involved in the regulation of osteoblastogenesis, which are transcription factors. Previous studies have heavily examined the role of factors that control gene expression during osteoblastogenesis, both in vitro and in vivo. However, the systematic relationship of these transcription factors remains unknown. The involvement of ncRNAs in this mechanism, particularly miRNAs, lncRNAs, and circRNAs, has been shown to influence transcriptional factor activity in the regulation of osteoblast differentiation. Here, we discuss nine essential transcription factors involved in osteoblast differentiation, including Runx2, Osx, Dlx5, β-catenin, ATF4, Ihh, Satb2, and Shn3. In addition, we summarize the role of ncRNAs and their relationship to these essential transcription factors in order to improve our understanding of the transcriptional regulation of osteoblast differentiation. Adequate exploration and understanding of the molecular mechanisms of osteoblastogenesis can be a critical strategy in the development of therapies for bone-related diseases.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Cell Differentiation/genetics
  3. Zainal Ariffin SH, Lim KW, Megat Abdul Wahab R, Zainal Ariffin Z, Rus Din RD, Shahidan MA, et al.
    PeerJ, 2022;10:e14174.
    PMID: 36275474 DOI: 10.7717/peerj.14174
    BACKGROUND: There have been promising results published regarding the potential of stem cells in regenerative medicine. However, the vast variety of choices of techniques and the lack of a standard approach to analyse human osteoblast and osteoclast differentiation may reduce the utility of stem cells as a tool in medical applications. Therefore, this review aims to systematically evaluate the findings based on stem cell differentiation to define a standard gene expression profile approach.

    METHODS: This review was performed following the PRISMA guidelines. A systematic search of the study was conducted by retrieving articles from the electronic databases PubMed and Web of Science to identify articles focussed on gene expression and approaches for osteoblast and osteoclast differentiation.

    RESULTS: Six articles were included in this review; there were original articles of in vitro human stem cell differentiation into osteoblasts and osteoclasts that involved gene expression profiling. Quantitative polymerase chain reaction (qPCR) was the most used technique for gene expression to detect differentiated human osteoblasts and osteoclasts. A total of 16 genes were found to be related to differentiating osteoblast and osteoclast differentiation.

    CONCLUSION: Qualitative information of gene expression provided by qPCR could become a standard technique to analyse the differentiation of human stem cells into osteoblasts and osteoclasts rather than evaluating relative gene expression. RUNX2 and CTSK could be applied to detect osteoblasts and osteoclasts, respectively, while RANKL could be applied to detect both osteoblasts and osteoclasts. This review provides future researchers with a central source of relevant information on the vast variety of gene expression approaches in analysing the differentiation of human osteoblast and osteoclast cells. In addition, these findings should enable researchers to conduct accurately and efficiently studies involving isolated human stem cell differentiation into osteoblasts and osteoclasts.

    Matched MeSH terms: Cell Differentiation/genetics
  4. Fan JY, Dama G, Liu YL, Guo WY, Lin JT
    Mol Biol (Mosk), 2023;57(4):668-670.
    PMID: 37528786
    In an in vitro culture system, primary hepatocytes usually display a low proliferation capacity, accompanied with a decrease of viability and a loss of hepatocyte-specific functions. Previous studies have demonstrated that the combination introductions of certain hepatocyte-specific transcription factors are able to convert fibroblasts into functional hepatocyte-like cells. However, such combinational usage of transcription factors in primary hepatocytes culture has not yet sufficiently studied. The forkhead box protein A3 (FoxA3) and hepatocyte nuclear factor 4α (Hnf4α) are liver-enriched transcription factors that play vital roles in the differentiation, and maintenance of hepatocytes. Thus, we simultaneously overexpressed the two genes, Foxa3 and Hnf4α, in rat hepatocytes and observed that the combinational augmentation of these two transcription factors have enhanced the proliferation and stabilized the hepatocyte-specific functions of primary hepatocytes over a long-term culture period.
    Matched MeSH terms: Cell Differentiation/genetics
  5. Dewi R, Yusoff NA, Abdul Razak SR, Abd Hamid Z
    PeerJ, 2023;11:e15608.
    PMID: 37456886 DOI: 10.7717/peerj.15608
    BACKGROUND: HSPCs are targets for benzene-induced hematotoxicity and leukemogenesis. However, benzene toxicity targeting microRNAs (miRNAs) and transcription factors (TF) that are involve in regulating self-renewing and differentiation of HSPCs comprising of different hematopoietic lineages remains poorly understood. In this study, the effect of a benzene metabolite, 1,4-benzoquinone (1,4-BQ) exposure, in HSPCs focusing on the self-renewing (miRNAs: miR-196b and miR-29a; TF: HoxB4, Bmi-1) and differentiation (miRNAs: miR-181a, TF: GATA3) pathways were investigated.

    METHODS: Freshly isolated mouse BM cells were initially exposed to 1,4-BQ at 1.25 to 5 µM for 24 h, followed by miRNAs and TF studies in BM cells. Then, the miRNAs expression was further evaluated in HSPCs of different lineages comprised of myeloid, erythroid and pre-B lymphoid progenitors following 7-14 days of colony forming unit (CFU) assay.

    RESULTS: Exposure to 1,4-BQ in BM cells significantly (p cell lineage in governing the toxicity of 1,4-BQ in HSPCs lineages deserves further investigation.

    Matched MeSH terms: Cell Differentiation/genetics
  6. Vohra MS, Ahmad B, Serpell CJ, Parhar IS, Wong EH
    Differentiation, 2020 08 23;115:62-84.
    PMID: 32891960 DOI: 10.1016/j.diff.2020.08.003
    Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.
    Matched MeSH terms: Cell Differentiation/genetics
  7. Chen YM, Chen LH, Li MP, Li HF, Higuchi A, Kumar SS, et al.
    Sci Rep, 2017 03 23;7:45146.
    PMID: 28332572 DOI: 10.1038/srep45146
    Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.
    Matched MeSH terms: Cell Differentiation/genetics
  8. Gnanasegaran N, Govindasamy V, Kathirvaloo P, Musa S, Abu Kasim NH
    J Tissue Eng Regen Med, 2018 02;12(2):e881-e893.
    PMID: 28079995 DOI: 10.1002/term.2401
    Parkinson's disease (PD) is characterized by tremors and cognitive issues, and is due to the death of dopaminergic (DA-ergic) neurons in brain circuits that are responsible for producing neurotransmitter dopamine (DA). Currently, cell replacement therapies are underway to improve upon existing therapeutic approaches such as drug treatments and electrical stimulation. Among the widely available sources, dental pulp stem cells (DPSCs) from deciduous teeth have gained popularity because of their neural crest origin and inherent propensity toward neuronal lineage. Despite the various pre-clinical studies conducted, an important factor yet to be elucidated is the influence of growth phases in a typical trans-differentiation process. This study selected DPSCs at three distinct time points with variable growth phase proportions (G0/G1, S and G2/M) for in vitro trans-differentiation into DA-ergic-like cells. Using commercially available PCR arrays, we identified distinct gene profiles pertaining to cell cycles in these phases. The differentiation outcomes were assessed in terms of morphology and gene and protein expression, as well as with functional assays. It was noted that DPSCs with the highest G0/G1 phase were comparatively the best, representing at least a 2-fold up regulation (p cell transplantation work. Copyright © 2017 John Wiley & Sons, Ltd.
    Matched MeSH terms: Cell Differentiation/genetics
  9. Hiew VV, Simat SFB, Teoh PL
    Stem Cell Rev Rep, 2018 Feb;14(1):43-57.
    PMID: 28884292 DOI: 10.1007/s12015-017-9764-y
    Stem cells are well-known to have prominent roles in tissue engineering applications. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can differentiate into every cell type in the body while adult stem cells such as mesenchymal stem cells (MSCs) can be isolated from various sources. Nevertheless, an utmost limitation in harnessing stem cells for tissue engineering is the supply of cells. The advances in biomaterial technology allows the establishment of ex vivo expansion systems to overcome this bottleneck. The progress of various scaffold fabrication could direct stem cell fate decisions including cell proliferation and differentiation into specific lineages in vitro. Stem cell biology and biomaterial technology promote synergistic effect on stem cell-based regenerative therapies. Therefore, understanding the interaction of stem cell and biomaterials would allow the designation of new biomaterials for future clinical therapeutic applications for tissue regeneration. This review focuses mainly on the advances of natural and synthetic biomaterials in regulating stem cell fate decisions. We have also briefly discussed how biological and biophysical properties of biomaterials including wettability, chemical functionality, biodegradability and stiffness play their roles.
    Matched MeSH terms: Cell Differentiation/genetics
  10. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    Biotechnol Appl Biochem, 2011 Jul-Aug;58(4):261-70.
    PMID: 21838801 DOI: 10.1002/bab.38
    One of the advantages of human adipose-derived stem cells (ASCs) in regenerative medicine is that they can be harvested in abundance. However, the stemness biomarkers, which marked the safety and efficacy of ASCs in accordance with the good manufacturing practice guidelines, is not yet well established. This study was designed to investigate the effect of long-term culture on the stemness properties of ASCs using quantitative real-time polymerase chain reaction and flow cytometry. Results showed the growth rate of ASCs was at its peak when they reached P10 (population doubling; PD = 26) but started to decrease when they were expanded to P15 (PD = 36) and P20 (PD = 46). The ASCs can be culture expanded with minimal alteration in the stemness genes and cluster of differentiation (CD) markers expression up to P10. Expression level of Sox2, Nestin, and Nanog3 was significantly decreased at later passage. CD31, CD45, CD117, and human leukocyte antigen DR, DQ, and DP were lowly expressed at P5 and P10 but their expressions increased significantly at P15 or P20. The differentiation ability of ASCs (adipogenesis, osteogenesis, and neurogenesis) also decreased in long-term culture. Our findings suggested that P10 (PD = 26) should be the "cutoff point" for clinical usage because ASCs at passage 15 onward showed significant changes in the stemness genes, CD markers expression, and differentiation capability.
    Matched MeSH terms: Cell Differentiation/genetics*
  11. Pati S, Muthuraju S, Hadi RA, Huat TJ, Singh S, Maletic-Savatic M, et al.
    Curr Stem Cell Res Ther, 2016;11(2):149-57.
    PMID: 26763886
    Traumatic brain injury (TBI) imposes horrendous neurophysiological alterations leading to most devastating forms of neuro-disability. Which includes impaired cognition, distorted locomotors activity and psychosomatic disability in both youths and adults. Emerging evidence from recent studies has identified mesenchymal stem cells (MSCs) as one of the promising category of stem cells having excellent neuroregenerative capability in TBI victims. Some of the clinical and animal studies reported that MSCs transplantation could cure neuronal damage as well as improve cognitive and locomotors behaviors in TBI. However, mechanism behind their broad spectrum neuroregenerative potential in TBI has not been reviewed yet. Therefore, in the present article, we present a comprehensive data on the important attributes of MSCs, such as neurotransdifferentiation, neuroprotection, axonal repair and plasticity, maintenance of blood-brain integrity, reduction of reactive oxygen species (ROS) and immunomodulation. We have reviewed in detail the crucial neurogenic capabilities of MSCs in vivo and provided consolidated knowledge regarding their cellular remodeling in TBI for future therapeutic implications.
    Matched MeSH terms: Cell Differentiation/genetics
  12. Wong CY, Chang YM, Tsai YS, Ng WV, Cheong SK, Chang TY, et al.
    BMC Genomics, 2020 Jul 07;21(1):467.
    PMID: 32635896 DOI: 10.1186/s12864-020-06868-5
    BACKGROUND: Mesangial cells play an important role in the glomerulus to provide mechanical support and maintaine efficient ultrafiltration of renal plasma. Loss of mesangial cells due to pathologic conditions may lead to impaired renal function. Mesenchymal stem cells (MSC) can differentiate into many cell types, including mesangial cells. However transcriptomic profiling during MSC differentiation into mesangial cells had not been studied yet. The aim of this study is to examine the pattern of transcriptomic changes during MSC differentiation into mesangial cells, to understand the involvement of transcription factor (TF) along the differentiation process, and finally to elucidate the relationship among TF-TF and TF-key gene or biomarkers during the differentiation of MSC into mesangial cells.

    RESULTS: Several ascending and descending monotonic key genes were identified by Monotonic Feature Selector. The identified descending monotonic key genes are related to stemness or regulation of cell cycle while ascending monotonic key genes are associated with the functions of mesangial cells. The TFs were arranged in a co-expression network in order of time by Time-Ordered Gene Co-expression Network (TO-GCN) analysis. TO-GCN analysis can classify the differentiation process into three stages: differentiation preparation, differentiation initiation and maturation. Furthermore, it can also explore TF-TF-key genes regulatory relationships in the muscle contraction process.

    CONCLUSIONS: A systematic analysis for transcriptomic profiling of MSC differentiation into mesangial cells has been established. Key genes or biomarkers, TFs and pathways involved in differentiation of MSC-mesangial cells have been identified and the related biological implications have been discussed. Finally, we further elucidated for the first time the three main stages of mesangial cell differentiation, and the regulatory relationships between TF-TF-key genes involved in the muscle contraction process. Through this study, we have increased fundamental understanding of the gene transcripts during the differentiation of MSC into mesangial cells.

    Matched MeSH terms: Cell Differentiation/genetics*
  13. Yang C, Li S, Li X, Li H, Li Y, Zhang C, et al.
    J Cell Mol Med, 2019 05;23(5):3549-3562.
    PMID: 30834718 DOI: 10.1111/jcmm.14254
    Sonic hedgehog (SHH) is a vertebrate homologue of the secreted Drosophila protein hedgehog and is expressed by the notochord and floor plate in the developing spinal cord. Sonic hedgehog provides signals relevant for positional information, cell proliferation and possibly cell survival, depending on the time and location of expression. Although the role of SHH in providing positional information in the neural tube has been experimentally proven, the underlying mechanism remains unclear. In this study, in ovo electroporation was employed in the chicken spinal cord during chicken embryo development. Electroporation was conducted at stage 17 (E2.5), after electroporation the embryos were continued incubating to stage 28 (E6) for sampling, tissue fixation with 4% paraformaldehyde and frozen sectioning. Sonic hedgehog and related protein expressions were detected by in situ hybridization and fluorescence immunohistochemistry and the results were analysed after microphotography. Our results indicate that the ectopic expression of SHH leads to ventralization in the spinal cord during chicken embryonic development by inducing abnormalities in the structure of the motor column and motor neuron integration. In addition, ectopic SHH expression inhibits the expression of dorsal transcription factors and commissural axon projections. The correct location of SHH expression is vital to the formation of the motor column. Ectopic expression of SHH in the spinal cord not only affects the positioning of motor neurons, but also induces abnormalities in the structure of the motor column. It leads to ventralization in the spinal cord, resulting in the formation of more ventral neurons forming during neuronal formation.
    Matched MeSH terms: Cell Differentiation/genetics
  14. Vasanthan P, Govindasamy V, Gnanasegaran N, Kunasekaran W, Musa S, Abu Kasim NH
    J Cell Mol Med, 2015 Mar;19(3):566-80.
    PMID: 25475098 DOI: 10.1111/jcmm.12381
    MicroRNAs (miRNAs) are small non-coding RNAs that regulate translation of mRNA into protein and play a crucial role for almost all biological activities. However, the identification of miRNAs from mesenchymal stem cells (MSCs), especially from dental pulp, is poorly understood. In this study, dental pulp stem cells (DPSCs) were characterized in terms of their proliferation and differentiation capacity. Furthermore, 104 known mature miRNAs were profiled by using real-time PCR. Notably, we observed 19 up-regulated miRNAs and 29 significantly down-regulated miRNAs in DPSCs in comparison with bone marrow MSCs (BM-MSCs). The 19 up-regulated miRNAs were subjected to ingenuity analysis, which were composed into 25 functional networks. We have chosen top 2 functional networks, which comprised 10 miRNA (hsa-miR-516a-3p, hsa-miR-125b-1-3p, hsa-miR-221-5p, hsa-miR-7, hsa-miR-584-5p, hsa-miR-190a, hsa-miR-106a-5p, hsa-mir-376a-5p, hsa-mir-377-5p and hsa-let-7f-2-3p). Prediction of target mRNAs and associated biological pathways regulated by each of this miRNA was carried out. We paid special attention to hsa-miR-516a-3p and hsa-miR-7-5p as these miRNAs were highly expressed upon validation with qRT-PCR analysis. We further proceeded with loss-of-function analysis with these miRNAs and we observed that hsa-miR-516a-3p knockdown induced a significant increase in the expression of WNT5A. Likewise, the knockdown of hsa-miR-7-5p increased the expression of EGFR. Nevertheless, further validation revealed the role of WNT5A as an indirect target of hsa-miR-516a-3p. These results provide new insights into the dynamic role of miRNA expression in DPSCs. In conclusion, using miRNA signatures in human as a prediction tool will enable us to elucidate the biological processes occurring in DPSCs.
    Matched MeSH terms: Cell Differentiation/genetics
  15. Choong PF, Teh HX, Teoh HK, Ong HK, Choo KB, Sugii S, et al.
    Int J Med Sci, 2014;11(11):1154-60.
    PMID: 25170299 DOI: 10.7150/ijms.8281
    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.
    Matched MeSH terms: Cell Differentiation/genetics
  16. Safwani WK, Makpol S, Sathapan S, Chua KH
    Cell Tissue Bank, 2013 Jun;14(2):289-301.
    PMID: 22476937 DOI: 10.1007/s10561-012-9309-1
    Adipose tissue is a source of multipotent stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic and adipogenic cells. Most studies on human adipose-derived stem cells (ASCs) have been carried out at the early passages. For clinical usage, ASCs need to be expanded in vitro for a period of time to get sufficient cells for transplantation into patients. However, the impact of long-term culture on ASCs molecular characteristics has not been established yet. Several studies have also shown that osteogenic and adipogenic cells have the ability to switch pathways during in vitro culture as they share the same progenitor cells. This data is important to ensure their functionality and efficacy before being used clinically in the treatment of bone diseases. Therefore, we aim to investigate the effect of long-term culture on the adipogenic, stemness and osteogenic genes expression during osteogenic induction of ASCs. In this study, the molecular characteristics of ASCs during osteogenic induction in long-term culture was analysed by observing their morphological changes during induction, analysis of cell mineralization using Alizarin Red staining and gene expression changes using quantitative RT-PCR. Morphologically, cell mineralization at P20 was less compared to P5, P10 and P15. Adipogenesis was not observed as negative lipid droplets formation was recorded during induction. The quantitative PCR data showed that adipogenic genes expression e.g. LPL and AP2 decreased but PPAR-γ was increased after osteogenic induction in long-term culture. Most stemness genes decreased at P5 and P10 but showed no significant changes at P15 and P20. While most osteogenic genes increased after osteogenic induction at all passages. When compared among passages after induction, Runx showed a significant increased at P20 while BSP, OSP and ALP decreased at later passage (P15 and P20). During long-term culture, ASCs were only able to differentiate into immature osteogenic cells.
    Matched MeSH terms: Cell Differentiation/genetics*
  17. Tan ML, Parkinson EK, Yap LF, Paterson IC
    Sci Rep, 2021 01 12;11(1):584.
    PMID: 33436723 DOI: 10.1038/s41598-020-79789-8
    Many of the characteristics ascribed to cancer-associated fibroblasts (CAFs) are shared by activated, autophagic and senescent fibroblasts. Whilst most oral squamous cell carcinomas (OSCCs) are genetically unstable (GU-OSCC), genetically stable variants (GS-OSCC) have been described and, notably, CAF activation (myofibroblast differentiation) and senescence are characteristics particularly associated with GU-OSCCs. However, it is not known whether autophagy is disrupted in these cells or whether autophagy regulates the development of the myofibroblast and senescent phenotypes. In this study, we show that senescent CAFs from GU-OSCCs contained more autophagosomes than normal human oral fibroblasts (NHOFs) and CAFs from GS-OSCCs possibly due to autophagic impairment. Further, we show that deregulation of autophagy in normal fibroblasts, either by inhibition with autophagy inhibitor, SAR405, or activation with TGF-β1, induced fibroblast activation and senescence: In response to TGF-β1, autophagy was induced prior to the development of the activated and senescent phenotypes. Lastly, we show that both SAR405- and TGF-β1-treated NHOFs enhance OSCC cell migration but only TGF-β1-treated cells increase OSCC invasion through Matrigel, indicating that TGF-β1 has additional effects that are independent of fibroblast activation/senescence. These results suggest a functional role for autophagy in the development of myofibroblast and CAF phenotypes.
    Matched MeSH terms: Cell Differentiation/genetics
  18. Zhou X, Li Y, Wang W, Wang S, Hou J, Zhang A, et al.
    Theranostics, 2020;10(21):9443-9457.
    PMID: 32863938 DOI: 10.7150/thno.46078
    Objective: Esophageal squamous cell carcinoma (ESCC) is one of the most commonly diagnosed cancer types in China. Recent genomic sequencing analysis indicated the over-activation of Hippo/YAP signaling might play important roles for the carcinogenic process and progression for ESCC patients. However, little is known about the molecular mechanisms that controls Hippo signaling activity in ESCC. Our previous studies indicated that PLCE1-an important risk factor for ESCC-linked to ESCC progression through snail signaling, during this period, we found PARK2 was an important downstream target of PLCE1-snail axis. PARK2 was decreased in ESCC human samples, and correlated with good prognosis in ESCC patients. Further research showed that PARK2 could inhibit YAP, which functions as key downstream effectors of the Hippo pathway. Here, we aim to reveal the molecular mechanisms of PARK2 modulated Hippo pathway in ESCC. Methods: To evaluate the function of PARK2 in ESCC, we used a tissue microarray (TMA) of 223 human ESCC patients and immunohistochemistry to analyze the correlation between PARK2 expression and clinicopathologic variables. Depletion of endogenous PARK2 and YAP from ESCC cells using CRISPR/Cas9 technologies. Flow cytometry and EdU cell proliferation assay were used to detect proliferation of ESCC cells. Nude mice subcutaneous injection and Ki-67 staining were used to evaluate tumor growth in vivo. Migration and invasion assays were performed. In addition, lung metastasis models in mice were used to validate the function of PARK2 in vivo. Identification of PARK2 involved in hippo pathway was achieved by expression microarray screening, double immunofluorescence staining and co-immunoprecipitation assays. The RNA-seq analysis results were validated through quantitative real-time PCR (qRT-PCR) analysis. The protein half-life of YAP was analyzed by Cycloheximide assay, and the TEAD activity was detected by Luciferase reporter assays. Results: Clinical sample of ESCC revealed that low PARK2 expression correlated with late tumor stage (P < 0.001), poor differentiation (P < 0.04), lymph node (P < 0.001) and distant metastasis (P = 0.0087). Multivariate Cox proportional regression analysis further revealed that PARK2 expression (P = 0.032) is an independent prognostic factor for the overall survival of ESCC patients. Besides, the immunohistochemistry results showed that PARK2 negatively correlated with YAP protein level (P < 0.001). PARK2 depletion promotes ESCC progression both through Hippo/YAP axis, while PARK2 overexpression suppresses ESCC tumor progression by Hippo signaling. Co-IP and ubiquitination assays revealed that PARK2 could interact with YAP in the cytosol and promotes YAP K48-linked ubiquitination at K90 sites. Conclusion: Clinical sample analysis and mechanistic study have validated PARK2 as a tumor suppressor for ESCC. Multivariate Cox proportional regression analysis further revealed that PARK2 is an independent prognostic factor for the overall survival of ESCC patients. Cellular and molecular mechanisms in this study showed that PARK2 associated with YAP protein in the cytosol, promoted YAP ubiquitination and proteasome-dependent degradation in ESCC cells. Therefore, as a novel modulator for Hippo signaling, modulation of PARK2 activity or gene expression level could be an appealing strategy to treat esophageal.
    Matched MeSH terms: Cell Differentiation/genetics
  19. Yuan JC, Yogarajah T, Lim SK, Yvonne Tee GB, Khoo BY
    Mol Med Rep, 2020 05;21(5):2063-2072.
    PMID: 32323762 DOI: 10.3892/mmr.2020.11012
    Excessive adipose tissue accumulation is an increasing health problem worldwide. The present study aimed to determine differentially expressed genes (DEGs) that are associated with the excessive accumulation of adipose tissues by PCR arrays in an excess dietary intake animal model. For this purpose, male Sprague Dawley rats were randomly assigned to 2 groups: Control (given an ordinary diet) and experimental (given twice the amount of the ordinary diet). After 2 months of feeding, the abdominal cavities of the rats from each group were opened, then subcutaneous and visceral adipose tissues were removed. The adipose tissues collected were then used for total RNA extraction and then reverse transcribed to cDNA, which was then used as a template to identify the DEGs of 84 transcripts for rat obesity by RT2 Profiler PCR Arrays. The results showed significant downregulation of bombesin‑like receptor 3 (BRS3) and uncoupling protein 1 (UCP1) in visceral adipose tissues of experimental rats compared with those of the control rats, and differential gene expression analysis showed an association with fat cell differentiation and regulation of triglyceride sequestration, as well as fatty acid binding. The gene expression patterns observed in the present study, which may be associated with peroxisome proliferator‑activated receptor‑γ (PPARG) on excessive visceral adipose tissue accumulation, may be useful in identifying a group of surrogate biomarkers for the early diet‑induced accumulation of visceral adipose tissue detection in humans. The biomarkers can also be the specific targets for drug development to reduce excessive visceral adipose tissue accumulation in the body and its associated diseases.
    Matched MeSH terms: Cell Differentiation/genetics
  20. Hiew MSY, Cheng HP, Huang CJ, Chong KY, Cheong SK, Choo KB, et al.
    J Biomed Sci, 2018 Jul 19;25(1):57.
    PMID: 30025541 DOI: 10.1186/s12929-018-0461-1
    BACKGROUND: Induced pluripotency in cancer cells by ectopic expression of pluripotency-regulating factors may be used for disease modeling of cancers. MicroRNAs (miRNAs) are negative regulators of gene expression that play important role in reprogramming somatic cells. However, studies on the miRNA expression profile and the expression patterns of the mesenchymal-epithelial transition (MET)/epithelial-mesenchymal transition (EMT) genes in induced pluripotent cancer (iPC) cells are lacking.

    METHODS: iPC clones were generated from two colorectal cancer (CRC) cell lines by retroviral transduction of the Yamanaka factors. The iPC clones obtained were characterized by morphology, expression of pluripotency markers and the ability to undergo in vitro tri-lineage differentiation. Genome-wide miRNA profiles of the iPC cells were obtained by microarray analysis and bioinformatics interrogation. Gene expression was done by real-time RT-PCR and immuno-staining; MET/EMT protein levels were determined by western blot analysis.

    RESULTS: The CRC-iPC cells showed embryonic stem cell-like features and tri-lineage differentiation abilities. The spontaneously-differentiated post-iPC cells obtained were highly similar to the parental CRC cells. However, down-regulated pluripotency gene expression and failure to form teratoma indicated that the CRC-iPC cells had only attained partial pluripotency. The CRC-iPC cells shared similarities in the genome-wide miRNA expression profiles of both cancer and pluripotent embryonic stem cells. One hundred and two differentially-expressed miRNAs were identified in the CRC-iPC cells, which were predicted by bioinformatics analysis be closely involved in regulating cellular pluripotency and the expression of the MET/EMT genes, possibly via the phosphatidylinositol-3 kinases-protein kinase B (PI3K-Akt) and transforming growth factor beta (TGF-β) signaling pathways. Irregular and inconsistent expression patterns of the EMT vimentin and Snai1 and MET E-cadherin and occludin proteins were observed in the four CRC-iPC clones analyzed, which suggested an epithelial/mesenchymal hybrid phenotype in the partially reprogrammed CRC cells. MET/EMT gene expression was also generally reversed on re-differentiation, also suggesting epigenetic regulation.

    CONCLUSIONS: Our data support the elite model for cancer cell-reprogramming in which only a selected subset of cancer may be fully reprogrammed; partial cancer cell reprogramming may also elicit an epithelial-mesenchymal mixed phenotype, and highlight opportunities and challenges in cancer cell-reprogramming.

    Matched MeSH terms: Cell Differentiation/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links