Displaying publications 1 - 20 of 540 in total

Abstract:
Sort:
  1. Appaturi JN, Ratti R, Phoon BL, Batagarawa SM, Ud Din I, Selvaraj M, et al.
    Dalton Trans, 2021 Apr 21;50(15):5370.
    PMID: 33881103 DOI: 10.1039/d1dt90055b
    Correction for 'A review of the recent progress on heterogeneous catalysts for Knoevenagel condensation' by Jimmy Nelson Appaturi et al., Dalton Trans., 2021, 50, 4445-4469, DOI: 10.1039/d1dt00456e.
    Matched MeSH terms: Catalysis
  2. Johan UUM, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Colloids Surf B Biointerfaces, 2021 Sep;205:111882.
    PMID: 34087776 DOI: 10.1016/j.colsurfb.2021.111882
    Carboxylesterases (CEs) are members of prominent esterase, and as their name imply, they catalyze the cleavage of ester linkages. By far, a considerable number of novel CEs have been identified to investigate their exquisite physiological and biochemical properties. They are abundant enzymes in nature, widely distributed in relatively broad temperature range and in various sources; both macroorganisms and microorganisms. Given the importance of these enzymes in broad industries, interest in the study of their mechanisms and structural-based engineering are greatly increasing. This review presents the current state of knowledge and understanding about the structure and functions of this ester-metabolizing enzyme, primarily from bacterial sources. In addition, the potential biotechnological applications of bacterial CEs are also encompassed. This review will be useful in understanding the molecular basis and structural protein of bacterial CEs that are significant for the advancement of enzymology field in industries.
    Matched MeSH terms: Catalysis; Biocatalysis
  3. Jeffri NI, Mohammad Rawi NF, Mohamad Kassim MH, Abdullah CK
    Int J Biol Macromol, 2024 Aug;274(Pt 2):133506.
    PMID: 38944064 DOI: 10.1016/j.ijbiomac.2024.133506
    Recent advancements have transformed lignin from a byproduct into a valuable raw material for polymers, dyes, adhesives, and fertilizers. However, its structural heterogeneity, variable reactive group content, impurities, and high extraction costs pose challenges to industrial-scale adoption. Efficient separation technologies and selective bond cleavage are crucial. Advanced pretreatment methods have enhanced lignin purity and reduced contamination, while novel catalytic techniques have improved depolymerization efficiency and selectivity. This review compares catalytic depolymerization methodologies, highlighting their advantages and disadvantages, and noting challenges in comparing yield values due to variations in isolation methods and lignin sources. Recognizing "technical lignin" from pulping processes, the review emphasizes its diverse applications and the necessity of understanding its structural characteristics. Emerging trends focus on bio-based functional additives and nanostructured lignin materials, promising enhanced properties and functionalities. Innovations open possibilities in sustainable agriculture, high-performance foams and composites, and advanced medical applications like drug delivery and wound healing. Leveraging lignin's biocompatibility, abundance, and potential for high-value applications, it can significantly contribute to sustainable material development across various industries. Continuous research in bio-based additives and nanostructured materials underscores lignin's potential to revolutionize material science and promote environmentally friendly industrial applications.
    Matched MeSH terms: Catalysis
  4. Sharif HMA, Mahmood N, Wang S, Hussain I, Hou YN, Yang LH, et al.
    Chemosphere, 2021 Jun;273:129695.
    PMID: 33524756 DOI: 10.1016/j.chemosphere.2021.129695
    Recently, the discharge of flue gas has become a global issue due to the rapid development in industrial and anthropogenic activities. Various dry and wet treatment approaches including conventional and hybrid hybrid wet scrubbing have been employing to combat against these toxic exhaust emissions. However, certain issues i.e., large energy consumption, generation of secondary pollutants, low regeneration of scrubbing liquid and high efficieny are hindering their practical applications on industrial level. Despite this, the hybrid wet scrubbing technique (advanced oxidation, ionic-liquids and solid engineered interface hybrid materials based techniques) is gaining great attention because of its low installation costs, simultaneous removal of multi-air pollutants and low energy requirements. However, the lack of understanding about the basic principles and fundamental requirements are great hurdles for its commercial scale application, which is aim of this review article. This review article highlights the recent developments, minimization of GHG, sustainable improvements for the regeneration of used catalyst via green and electron rich donors. It explains, various hybrid wet scrubbing techniques can perform well under mild condition with possible improvements such as development of stable, heterogeneous catalysts, fast and in-situ regeneration for large scale applications. Finally, it discussed recovery of resources i.e., N2O, NH3 and N2, the key challenges about several competitive side products and loss of catalytic activity over time to treat toxic gases via feasible solutions by hybrid wet scrubbing techniques.
    Matched MeSH terms: Catalysis
  5. Siburian R, Ali AMM, Sebayang K, Supeno M, Tarigan K, Simanjuntak C, et al.
    Sci Rep, 2021 Jan 28;11(1):2532.
    PMID: 33510232 DOI: 10.1038/s41598-020-80472-1
    In this paper, we report about chemically interaction between Pt Subnano-Clusters on Graphene Nano Sheets (GNS). The aim of this research is to clarify the size effect of Pt clusters on Pt 1-7 wt.%/GNS. This research is an experimental laboratory research. GNS was synthesized by using modified Hummer's method and 1-7 wt.% Pt/GNS were prepared with impregnation method. Then, they were analyzed with TG/DTA, XRD, TEM and XPS, respectively. The results show that Pt clusters are well deposited on GNS (TG/DTA and TEM data). Those data also are consistent with XRD data. The weak and broad peaks appear at 2θ = 39°, indicating Pt metal exists on GNS. The state of Pt is confirmed by using XPS. The appearance of Pt 4f. peaks proves that Pt metal is chemical interaction on GNS. The size of Pt clusters may affect the chemically properties of Pt/GNS catalysts.
    Matched MeSH terms: Catalysis
  6. Hwang Y, Kim YM, Lee JE, Rhee GH, Show PL, Andrew Lin KY, et al.
    Environ Res, 2023 Feb 15;219:115071.
    PMID: 36528046 DOI: 10.1016/j.envres.2022.115071
    To remove harmful volatile organic compounds (VOCs) including 2-butanone (methyl ethyl ketone, MEK) emitted from various industrial plants is very important for the clean air. Also, it is worthwhile to recycle porous spent fluid catalytic cracking (SFCC) catalysts from various petroleum refineries in terms of reducing industrial waste and the reuse of discharged resources. Therefore, Mn and Mn-Cu added SFCC (Mn/SFCC and Mn-Cu/SFCC) catalysts were prepared to compare their catalytic efficiencies together with the SFCC catalyst in the ozonation of 2-butanone. Since the SFCC-based catalysts have a structure similar to that of zeolite Y (Y), the Mn-loaded zeolite Y catalyst (Mn/Y) was also prepared to compare its activity for the removal of 2-butanone and ozone to that of the SFCC-based ones at room temperature. Among the five catalysts of this study (Y, Mn/Y, SFCC, Mn/SFCC, and Mn-Cu/SFCC), the Mn-Cu/SFCC and Mn/SFCC catalysts showed the better catalytic decomposition activity than the others. The increased distributions of the Mn3+ species and the Ovacancy sites in Mn/SFCC and Mn-Cu/SFCC catalysts which could supply more available active sites for the 2-butanone and ozone removal would enhance the catalytic activity of them.
    Matched MeSH terms: Catalysis
  7. Adamu H, Bello U, IbrahimTafida U, Garba ZN, Galadima A, Lawan MM, et al.
    J Environ Manage, 2024 Nov;370:122543.
    PMID: 39305881 DOI: 10.1016/j.jenvman.2024.122543
    Soil pollution by microplastics (MPs) is an escalating environmental crisis with far-reaching consequences. However, current research on the degradation and/or remediation of MPs has mainly focused on water-simulated environments, with little attention given to soil MPs. Therefore, the review explores such terrestrial territory, exploring the potential of biodegradation and novel photocatalytic technologies for MPs degradation/remediation in soil. This review comprehensively investigates the potential of biological and photocatalytic approaches for soil MPs degradation and remediation. A temporal analysis of research from 2004 to 2024 highlights the increasing focus on this critical issue. The review explores the biocatalytic roles of diverse enzymes, including cutinase, PETase, MHETase, hydrolase, lipase, laccase, lignin peroxidase, and Mn-peroxidase, in MPs degradation. Strategies for enzyme engineering, such as protein engineering and immobilization, are explored to enhance catalytic efficiency. The potential for developing enzyme consortia for optimized MP degradation is also discussed. Photocatalytic remediation using TiO2, ZnO, clay, hydrogel, and other photocatalysts is examined, emphasizing their mechanisms and effectiveness. Computational modeling is proposed to deepen understanding of soil MPs-catalyst interactions, primarily aiming to develop novel catalysts tailored for soil environments for environmental safety and sustainable restoration. A comparative analysis of biological and photocatalytic approaches evaluates their environmental implications and the potential for synergistic combinations, with emphasis on soil quality protection, restoration and impact on soil ecosystems. Hence, this review accentuates the urgent need for innovative solutions to address MPs pollution in soil and provides a foundational understanding of the current knowledge gaps, as well as paves the way for future research and development.
    Matched MeSH terms: Catalysis
  8. Liu L, Han ZB, Wang SM, Yuan DQ, Ng SW
    Inorg Chem, 2015 Apr 20;54(8):3719-21.
    PMID: 25849722 DOI: 10.1021/acs.inorgchem.5b00185
    Herein, two stable lead(II) molecular-bowl-based metal-organic frameworks and their micro- and nanosized forms with open metal sites were presented. These materials could act as Lewis acid catalysts to cyanosilylation reaction. Moreover, the catalytic performances are size-dependent, with the catalyst with nanosized form being 1 order of magnitude more efficient than those with micro- and millisized forms.
    Matched MeSH terms: Catalysis
  9. Xu D, Yang L, Zhao M, Zhang J, Syed-Hassan SSA, Sun H, et al.
    Environ Pollut, 2021 Feb 01;270:116120.
    PMID: 33341552 DOI: 10.1016/j.envpol.2020.116120
    Understanding the migration and conversion of nitrogen in wood-based panels (WBPs) during pyrolysis is fundamentally important for potentially transforming the N-containing species into valuable material-based products. This review firstly summarizes the commonly used methods for examining N evolution during the WBPs pyrolysis before probing into the association between the wood and adhesives.The potential effects of wood-adhesive interaction on the pyrolysis process are subsequently analyzed. Furthermore, the controversial statements from literature on the influence of adhesives on wood pyrolysis behavior are discussed, which is followed by the detailed investigation into the distribution and evolution of N-containing species in gas, liquid and char, respectively, during WBPs pyrolysis in recent studies. The differences in N species due to the heating sources (i.e. electrical heating vs microwave heating) are particularly compared. Finally, based on the characteristics of staged pyrolysis, co-pyrolysis and catalytic pyrolysis, the converting pathways for WBPs are proposed with an emphasis on the production of value-added chemicals and carbon materials, simultaneously mitigating NOx emission.
    Matched MeSH terms: Catalysis
  10. Looi PY, Mohamed AR, Tye CT
    J Nanosci Nanotechnol, 2013 Oct;13(10):6988-95.
    PMID: 24245175
    In this study, performances of mesoporous Mo/Al2O3 catalysts prepared by sol-gel and post-hydrolysis methods in hydrocracking of atmospheric residual oil were compared. In addition, different methods: (i) the single step and (ii) conventional impregnation method to incorporate active metal over the mesoporous support were also investigated. For single step method, Mo/Al2O3 catalysts were synthesized directly by sol-gel and post-hydrolysis method. On the other hand, the impregnation method was a two step procedure which involved the production of alumina via sol-gel or post-hydrolysis method and followed by respective Mo impregnation. In general, mesoporous Mo/Al2O3 catalysts prepared by sol-gel method resulted in relatively higher surface area (> 400 m2/g) and large pore volume (- 0.8 cm3/g). Mo/Al2O3 catalysts prepared by sol-gel method exhibited higher hydrocracking activity as well. The Mo crystal size was found to relate directly with the hydrocracking result.
    Matched MeSH terms: Catalysis
  11. Patil KN, Prasad D, Bhagyashree, Manoorkar VK, Nabgan W, Nagaraja BM, et al.
    Chemosphere, 2021 Oct;281:130988.
    PMID: 34289632 DOI: 10.1016/j.chemosphere.2021.130988
    Catalytic hydrolysis of sodium borohydride can potentially be considered as a convenient and safe method to generate hydrogen, an environmentally clean and sustainable fuel for the future. The present effort establishes the development of FeCuCo tri-metallic oxide catalyst by a simple, single-step solution combustion synthesis (SCS) method for hydrogen generation from NaBH4 hydrolysis. Amongst series of FeCuCo tri-metallic oxide catalyst synthesized, FeCuCo with 50:37.5:12.5 wt% respective precursor loading displayed remarkable activity by generating hydrogen at the rate of 1380 mL min-1 g-1 (1242 mL in 18 min) with turnover frequency (TOF) of 62.02 mol g-1 min-1. The catalyst was characterized by using various techniques to understand their physiochemical and morphological properties. The results revealed that the catalyst synthesized by combustion method led to the formation of FeCuCo with appreciable surface area, porous foam-like morphology and high surface acidity. Major factors affecting the hydrolysis of NaBH4 such as catalyst loading, NaOH concentration and temperature variation were studied in detail. Additionally, the FeCuCo catalyst also displayed substantial recyclability performance up to eight cycles without considerable loss in its catalytic activity. Therefore, FeCuCo oxide can be demonstrated as one of the most efficient, cost effective tri-metallic catalyst so far for application in the hydrogen generation.
    Matched MeSH terms: Catalysis
  12. Lin JY, Lee J, Oh WD, Kwon E, Tsai YC, Lisak G, et al.
    J Colloid Interface Sci, 2021 Nov 15;602:95-104.
    PMID: 34118608 DOI: 10.1016/j.jcis.2021.05.098
    Metal Organic Frameworks (MOFs) represent a promising class of metallic catalysts for reduction of nitrogen-containing contaminants (NCCs), such as 4-nitrophenol (4-NP). Nevertheless, most researches involving MOFs for 4-NP reduction employ noble metals in the form of fine powders, making these powdered noble metal-based MOFs impractical and inconvenient for realistic applications. Thus, it would be critical to develop non-noble-metal MOFs which can be incorporated into macroscale and porous supports for convenient applications. Herein, the present study proposes to develop a composite material which combines advantageous features of macroscale/porous supports, and nanoscale functionality of MOFs. In particular, copper foam (CF) is selected as a macroscale porous medium, which is covered by nanoflower-structured CoO to increase surfaces for growing a cobaltic MOF, ZIF-67. The resultant composite comprises of CF covered by CoO nanoflowers decorated with ZIF-67 to form a hierarchical 3D-structured catalyst, enabling this ZIF-67@Cu foam (ZIF@CF) a promising catalyst for reducing 4-NP, and other NCCs. Thus, ZIF@CF can readily reduce 4-NP to 4-AP with a significantly lower Ea of 20 kJ/mol than reported values. ZIF@CF could be reused over 10 cycles and remain highly effective for 4-NP reduction. ZIF@CF also efficiently reduces other NCCs, such as 2-nitrophenol, 3-nitrophenol, methylene blue, and methyl orange. ZIF@CF can be adopted as catalytic filters to enable filtration-type reduction of NCCs by passing NCC solutions through ZIF@CF to promptly and conveniently reduce NCCs. The versatile and advantageous catalytic activity of ZIF@CF validates that ZIF@CF is a promising and practical heterogeneous catalyst for reductive treatments of NCCs.
    Matched MeSH terms: Catalysis
  13. Alias N, Hussain Z, Tan WK, Kawamura G, Muto H, Matsuda A, et al.
    Chemosphere, 2021 Nov;283:131231.
    PMID: 34144283 DOI: 10.1016/j.chemosphere.2021.131231
    An anodic film with a nanoporous structure was formed by anodizing niobium at 60 V in fluorinated ethylene glycol (fluoride-EG). After 30 min of anodization, the anodic film exhibited a "pore-in-pore" structure; that is, there were smaller pores growing inside larger pores. The as-anodized film was weakly crystalline and became orthorhombic Nb2O5 after heat treatment. The energy band gap of the annealed nanoporous Nb2O5 film was 2.9 eV. A photocatalytic reduction experiment was performed on Cr(VI) under ultraviolet (UV) radiation by immersing the nanoporous Nb2O5 photocatalyst in a Cr(VI) solution at pH 2. The reduction process was observed to be very slow; hence, ethylenediaminetetraacetic acid (EDTA) was added as an organic hole scavenger, which resulted in 100% reduction after 45 min of irradiation. The photocatalytic reduction experiment was also performed under visible light, and findings showed that complete reduction achieved after 120 min of visible light exposure.
    Matched MeSH terms: Catalysis
  14. Gasim MF, Lim JW, Low SC, Lin KA, Oh WD
    Chemosphere, 2022 Jan;287(Pt 4):132458.
    PMID: 34610377 DOI: 10.1016/j.chemosphere.2021.132458
    Over the past decade, there has been a surge of interest in using char (hydrochar or biochar) derived from biomass as persulfate (PS, either peroxymonosulfate or peroxydisulfate) activator for anthropogenic pollutants removal. While extensive investigation showed that char could be used as a PS activator, its sustainability over prolonged application is equivocal. This review provides an assessment of the knowledge gap related to the sustainability of char as a PS activator. The desirable char properties for PS activation are identified, include the high specific surface area and favorable surface chemistry. Various synthesis strategies to obtain the desirable properties during biomass pre-treatment, hydrochar and biochar synthesis, and char post-treatment are discussed. Thereafter, factors related to the sustainability of employing char as a PS activator for anthropogenic pollutants removal are critically evaluated. Among the critical factors include performance uncertainty, competing adsorption process, char stability during PS activation, biomass precursor variation, scalability, and toxic components in char. Finally, some potential research directions are provided. Fulfilling the sustainability factors will provide opportunity to employ char as an economical and efficient catalyst for sustainable environmental remediation.
    Matched MeSH terms: Catalysis
  15. Yu X, Ng SF, Putri LK, Tan LL, Mohamed AR, Ong WJ
    Small, 2021 12;17(48):e2006851.
    PMID: 33909946 DOI: 10.1002/smll.202006851
    Graphitic carbon nitride (g-C3 N4 ) is a kind of ideal metal-free photocatalysts for artificial photosynthesis. At present, pristine g-C3 N4 suffers from small specific surface area, poor light absorption at longer wavelengths, low charge migration rate, and a high recombination rate of photogenerated electron-hole pairs, which significantly limit its performance. Among a myriad of modification strategies, point-defect engineering, namely tunable vacancies and dopant introduction, is capable of harnessing the superb structural, textural, optical, and electronic properties of g-C3 N4 to acquire an ameliorated photocatalytic activity. In view of the burgeoning development in this pacey field, a timely review on the state-of-the-art advancement of point-defect engineering of g-C3 N4 is of vital significance to advance the solar energy conversion. Particularly, insights into the intriguing roles of point defects, the synthesis, characterizations, and the systematic control of point defects, as well as the versatile application of defective g-C3 N4 -based nanomaterials toward photocatalytic water splitting, carbon dioxide reduction and nitrogen fixation will be presented in detail. Lastly, this review will conclude with a balanced perspective on the technical and scientific hindrances and future prospects. Overall, it is envisioned that this review will open a new frontier to uncover novel functionalities of defective g-C3 N4 -based nanostructures in energy catalysis.
    Matched MeSH terms: Catalysis
  16. Gnanasekaran L, Manoj D, Rajendran S, Gracia F, Jalil AA, Chen WH, et al.
    Environ Res, 2023 Nov 01;236(Pt 2):116790.
    PMID: 37517483 DOI: 10.1016/j.envres.2023.116790
    The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV-vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants.
    Matched MeSH terms: Catalysis
  17. Shaibullah S, Shuhaimi N, Ker DS, Mohd-Sharif N, Ho KL, Teh AH, et al.
    Commun Biol, 2023 Sep 08;6(1):920.
    PMID: 37684342 DOI: 10.1038/s42003-023-05265-4
    Burkholderia pseudomallei is a highly versatile pathogen with ~25% of its genome annotated to encode hypothetical proteins. One such hypothetical protein, BPSL1038, is conserved across seven bacterial genera and 654 Burkholderia spp. Here, we present a 1.55 Å resolution crystal structure of BPSL1038. The overall structure folded into a modified βαββαβα ferredoxin fold similar to known Cas2 nucleases. The Cas2 equivalent catalytic aspartate (D11) pairs are conserved in BPSL1038 although B. pseudomallei has no known CRISPR associated system. Functional analysis revealed that BPSL1038 is a nuclease with endonuclease activity towards double-stranded DNA. The DNase activity is divalent ion independent and optimum at pH 6. The concentration of monovalent ions (Na+ and K+) is crucial for nuclease activity. An active site with a unique D11(X20)SST motif was identified and proposed for BPSL1038 and its orthologs. Structure modelling indicates the catalytic role of the D11(X20)SST motif and that the arginine residues R10 and R30 may interact with the nucleic acid backbone. The structural similarity of BPSL1038 to Cas2 proteins suggests that BPSL1038 may represent a sub-family of nucleases that share a common ancestor with Cas2.
    Matched MeSH terms: Catalysis
  18. Inayat A, Rocha-Meneses L, Ayoub M, Ullah S, Abdullah AZ, Naqvi SR, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):72224-72235.
    PMID: 37170050 DOI: 10.1007/s11356-023-27371-w
    This study investigated the effect of different Co3O4-based catalysts on the catalytic decomposition of nitrous oxide (N2O) and on nitric oxide (NO) conversion. The experiments were carried out using various reaction temperatures, alkaline solutions, pH, mixing conditions, aging times, space velocities, impregnation loads, and compounds. The results showed that Co3O4 catalysts prepared by precipitation methods have the highest catalytic activity and N2O conversion, even at low reaction temperatures, while the commercial nano and powder forms of Co3O4 (CS) have the lowest performance. The catalysts become inactive at temperatures below 400 °C, and their activity is strongly influenced by the mixing temperature. Samples without stirring during the aging process have higher catalytic activity than those with stirring, even at low reaction temperatures (200-300 °C). The catalytic activity of Co3O4 PM1 decreases with low W/F values and low reaction temperatures. Additionally, the catalyst's performance tends to increase with the reduction process. The study suggests that cobalt-oxide-based catalysts are effective in N2O catalytic decomposition and NO conversion. The findings may be useful in the design and optimization of catalytic systems for N2O and NO control. The results obtained provide important insights into the development of highly efficient, low-cost, and sustainable catalysts for environmental protection.
    Matched MeSH terms: Catalysis
  19. Futane A, Jadhav P, Mustafa AH, Srinivasan A, Narayanamurthy V
    Biotechnol Lett, 2024 Feb;46(1):1-17.
    PMID: 38155321 DOI: 10.1007/s10529-023-03454-z
    Metal-Organic Frameworks (MOFs) have exceptional inherent properties that make them highly suitable for diverse applications, such as catalysis, storage, optics, chemo sensing, and biomedical science and technology. Over the past decades, researchers have utilized various techniques, including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasonic, to synthesize MOFs with tailored properties. Post-synthetic modification of linkers, nodal components, and crystallite domain size and morphology can functionalize MOFs to improve their aptamer applications. Advancements in AI and machine learning led to the development of nonporous MOFs and nanoscale MOFs for medical purposes. MOFs have exhibited promise in cancer therapy, with the successful accumulation of a photosensitizer in cancer cells representing a significant breakthrough. This perspective is focused on MOFs' use as advanced materials and systems for cancer therapy, exploring the challenging aspects and promising features of MOF-based cancer diagnosis and treatment. The paper concludes by emphasizing the potential of MOFs as a transformative technology for cancer treatment and diagnosis.
    Matched MeSH terms: Catalysis
  20. Bagheri S, Muhd Julkapli N, Bee Abd Hamid S
    ScientificWorldJournal, 2014;2014:727496.
    PMID: 25383380 DOI: 10.1155/2014/727496
    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications.
    Matched MeSH terms: Catalysis*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links