Displaying all 7 publications

Abstract:
Sort:
  1. Lee OS, Ahn S, Ahn JH, Teo SH, Lee YS
    Arch Orthop Trauma Surg, 2018 Feb;138(2):227-236.
    PMID: 29143167 DOI: 10.1007/s00402-017-2826-4
    INTRODUCTION: The purpose of this systematic review and meta-analysis was to evaluate the efficacy of concurrent cartilage procedures during high tibial osteotomy (HTO) for medial compartment osteoarthritis (OA) by comparing the outcomes of studies that directly compared the use of HTO plus concurrent cartilage procedures versus HTO alone.

    MATERIALS AND METHODS: Results that are possible to be compared in more than two articles were presented as forest plots. A 95% confidence interval was calculated for each effect size, and we calculated the I 2 statistic, which presents the percentage of total variation attributable to the heterogeneity among studies. The random effects model was used to calculate the effect size.

    RESULTS: Seven articles were included to the final analysis. Case groups were composed of HTO without concurrent procedures and control groups were composed of HTO with concurrent procedures such as marrow stimulation procedure, mesenchymal stem cell transplantation, and injection. The case group showed a higher hospital for special surgery score and mean difference was 4.10 [I 2 80.8%, 95% confidence interval (CI) - 9.02 to 4.82]. Mean difference of the mechanical femorotibial angle in five studies was 0.08° (I 2 0%, 95% CI - 0.26 to 0.43). However, improved arthroscopic, histologic, and MRI results were reported in the control group.

    CONCLUSION: Our analysis support that concurrent procedures during HTO for medial compartment OA have little beneficial effect regarding clinical and radiological outcomes. However, they might have some beneficial effects in terms of arthroscopic, histologic, and MRI findings even though the quality of healed cartilage is not good as that of original cartilage. Therefore, until now, concurrent procedures for medial compartment OA have been considered optional. Nevertheless, no conclusions can be drawn for younger patients with focal cartilage defects and concomitant varus deformity. This question needs to be addressed separately.

    Matched MeSH terms: Cartilage/physiology
  2. Dehghan F, Haerian BS, Muniandy S, Yusof A, Dragoo JL, Salleh N
    Scand J Med Sci Sports, 2014 Aug;24(4):e220-9.
    PMID: 24283470 DOI: 10.1111/sms.12149
    Relaxin is a hormone structurally related to insulin and insulin-like growth factor, which exerts its regulatory effect on the musculoskeletal and other systems through binding to its receptor in various tissues, mediated by different signaling pathways. Relaxin alters the properties of cartilage and tendon by activating collagenase. This hormone is also involved in bone remodeling and healing of injured ligaments and skeletal muscle. In this review, we have summarized the literature on the effect of relaxin in musculoskeletal system to provide a broad perspective for future studies in this field.
    Matched MeSH terms: Cartilage/physiology
  3. Law JX, Liau LL, Aminuddin BS, Ruszymah BH
    Int J Pediatr Otorhinolaryngol, 2016 Dec;91:55-63.
    PMID: 27863642 DOI: 10.1016/j.ijporl.2016.10.012
    Tracheal replacement is performed after resection of a portion of the trachea that was impossible to reconnect via direct anastomosis. A tissue-engineered trachea is one of the available options that offer many advantages compared to other types of graft. Fabrication of a functional tissue-engineered trachea for grafting is very challenging, as it is a complex organ with important components, including cartilage, epithelium and vasculature. A number of studies have been reported on the preparation of a graftable trachea. A laterally rigid but longitudinally flexible hollow cylindrical scaffold which supports cartilage and epithelial tissue formation is the key element. The scaffold can be prepared via decellularization of an allograft or fabricated using biodegradable or non-biodegradable biomaterials. Commonly, the scaffold is seeded with chondrocytes and epithelial cells at the outer and luminal surfaces, respectively, to hasten tissue formation and improve functionality. To date, several clinical trials of tracheal replacement with tissue-engineered trachea have been performed. This article reviews the formation of cartilage tissue, epithelium and neovascularization of tissue-engineered trachea, together with the obstacles, possible solutions and future. Furthermore, the role of the bioreactor for in vitro tracheal graft formation and recently reported clinical applications of tracheal graft were also discussed. Generally, although encouraging results have been achieved, however, some obstacles remain to be resolved before the tissue-engineered trachea can be widely used in clinical settings.
    Matched MeSH terms: Cartilage/physiology*
  4. Abdullah B, Shibghatullah AH, Hamid SS, Omar NS, Samsuddin AR
    Cell Tissue Bank, 2009 Aug;10(3):205-13.
    PMID: 18975136 DOI: 10.1007/s10561-008-9111-2
    This study was performed to determine the microscopic biological response of human nasal septum chondrocytes and human knee articular chondrocytes placed on a demineralized bovine bone scaffold. Both chondrocytes were cultured and seeded onto the bovine bone scaffold with seeding density of 1 x 105 cells per 100 microl/scaffold and incubated for 1, 2, 5 and 7 days. Proliferation and viability of the cells were measured by mitochondrial dehydrogenase activity (MTT assay), adhesion study was analyzed by scanning electron microscopy and differentiation study was analyzed by immunofluorescence staining and confocal laser scanning electron microscopy. The results showed good proliferation and viability of both chondrocytes on the scaffolds from day 1 to day 7. Both chondrocytes increased in number with time and readily grew on the surface and into the open pores of the scaffold. Immunofluorescence staining demonstrated collagen type II on the scaffolds for both chondrocytes. The results showed good cells proliferation, attachment and maturity of the chondrocytes on the demineralized bovine bone scaffold. The bovine bone being easily resourced, relatively inexpensive and non toxic has good potential for use as a three dimensional construct in cartilage tissue engineering.
    Matched MeSH terms: Cartilage/physiology*
  5. Ude CC, Seet WT, Sharen Aini S, Aminuddin BS, Ruszymah BHI
    Sci Rep, 2018 03 12;8(1):4345.
    PMID: 29531282 DOI: 10.1038/s41598-018-22748-1
    The study objectives include, enhancing the proliferations of aged bone marrow stem cells (BMSCs) and adipose stem cells (ADSCs); and evaluating the shelf lives of clinical grade chondrogenically induced cells from both samples. ADSCs and BMSCs from 56 patients (76 ± 8 yrs) were proliferated using basal medium (FD) and at (5, 10, 15, 20 and 25) ng/ml of basal fibroblast growth factor (bFGF). They were induced to chondrogenic lineage and stored for more than 120 hrs in FD, serum, Dulbecco's phosphate buffered saline (DPBS) and saline at 4 °C. In FD, cells stagnated and BMSCs' population doubling time (PDT) was 137 ± 30 hrs, while ADSCs' was 129.7 ± 40 hrs. bFGF caused PDT's decrease to 24.5 ± 5.8 hrs in BMSCs and 22.0 ± 6.5 hrs in ADSCs (p = 0.0001). Both cells were positive to stem cell markers before inductions and thereafter, expressed significantly high chondrogenic genes (p = 0.0001). On shelf life, both cells maintained viabilities and counts above 70% in FD and serum after 120 hrs. BMSCs' viabilities in DPBS fell below 70% after 96 hrs and saline after 72 hrs. ADSCs' viability fell below 70% in DPBS after 24 hrs and saline within 24 hrs. Concentrations between 20 ng/ml bFGF is ideal for aged adult cells' proliferation and delivery time of induced BMSCs and ADSCs can be 120 hrs in 4 °C serum.
    Matched MeSH terms: Cartilage/physiology*
  6. Yusoff N, Abu Osman NA, Pingguan-Murphy B
    Med Eng Phys, 2011 Jul;33(6):782-8.
    PMID: 21356602 DOI: 10.1016/j.medengphy.2011.01.013
    A mechanical-conditioning bioreactor has been developed to provide bi-axial loading to three-dimensional (3D) tissue constructs within a highly controlled environment. The computer-controlled bioreactor is capable of applying axial compressive and shear deformations, individually or simultaneously at various regimes of strain and frequency. The reliability and reproducibility of the system were verified through validation of the spatial and temporal accuracy of platen movement, which was maintained over the operating length of the system. In the presence of actual specimens, the system was verified to be able to deliver precise bi-axial load to the specimens, in which the deformation of every specimen was observed to be relatively homogeneous. The primary use of the bioreactor is in the culture of chondrocytes seeded within an agarose hydrogel while subjected to physiological compressive and shear deformation. The system has been designed specifically to permit the repeatable quantification and characterisation of the biosynthetic activity of cells in response to a wide range of short and long term multi-dimensional loading regimes.
    Matched MeSH terms: Cartilage/physiology*
  7. Ruszymah BH, Lokman BS, Asma A, Munirah S, Chua K, Mazlyzam AL, et al.
    Int J Pediatr Otorhinolaryngol, 2007 Aug;71(8):1225-34.
    PMID: 17531328
    This study was aimed at regenerating autologous elastic cartilage for future use in pediatric ear reconstruction surgery. Specific attentions were to characterize pediatric auricular chondrocyte growth in a combination culture medium and to assess the possibility of elastic cartilage regeneration using human fibrin.
    Matched MeSH terms: Elastic Cartilage/physiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links