Displaying all 4 publications

Abstract:
Sort:
  1. Naveen SV, Ahmad RE, Hui WJ, Suhaeb AM, Murali MR, Shanmugam R, et al.
    Int J Med Sci, 2014;11(1):97-105.
    PMID: 24396291 DOI: 10.7150/ijms.6964
    Monosodium -iodoacetate (MIA)-induced animal model of osteoarthritis (OA) is under-utilised despite having many inherent advantages. At present, there is lack of studies that directly compare the degenerative changes induced by MIA with the surgical osteoarthritis induction method and human osteoarthritis, which would further verify a greater use of this model. Therefore, we compared the histological, biochemical and biomechanical characteristics in rat model using MIA against the anterior cruciate ligament transection (ACLT) and human cartilage with clinically established osteoarthritis. The right knees of Sprague-Dawley rats were subjected to either MIA or ACLT (n=18 in each group). Six rats were used as controls. Human cartilage samples were collected and compared from patients clinically diagnosed with (n=7) and without osteoarthritis (n=3). Histological, biochemical (Glycosaminoglycans/total protein) and biomechanical (cartilage stiffness) evaluations were performed at the end of the 1(st) and 2(nd) week after OA induction. For human samples, evaluations were performed at the time of sampling. Histopathological changes in the MIA group were comparable to that observed in the ACLT group and human OA. The Mankin scores of the 3 groups were comparable (MIA: 11.5 ± 1.0; ACLT: 10.1 ± 1.1; human OA: 13.2 ± 0.8). Comparable reduction in Glycosaminoglycan/total protein content in the intervention groups were observed (MIA: 7 ± 0.6; ACLT: 6.6 ± 0.5; human OA: 3.1 ± 0.7). Cartilage stiffness score were 24.2 ± 15.3 Mpa for MIA, 25.3 ± 4.8 for ACLT and 0.5 ± 0.0 Mpa for human OA. The MIA model produces comparable degenerative changes to ACLT and human OA with the advantage of being rapid, minimally invasive and reproducible. Therefore, wider utilisation of MIA as animal translational OA model should perhaps be advocated.
    Matched MeSH terms: Cartilage, Articular/physiopathology*
  2. Bajuri MN, Kadir MR, Amin IM, Ochsner A
    Proc Inst Mech Eng H, 2012 Jul;226(7):510-20.
    PMID: 22913098 DOI: 10.1177/0954411912445846
    The wrist is the most complex joint for virtual three-dimensional simulations, and the complexity is even more pronounced when dealing with skeletal disorders of the joint such, as rheumatoid arthritis (RA). In order to analyse the biomechanical difference between healthy and diseased joints, three-dimensional models of these two wrist conditions were developed from computed tomography images. These images consist of eight carpal bones, five metacarpal bones, the distal radius and ulna. The cartilages were developed based on the shape of the available articulations and ligaments were simulated via mechanical links. The RA model was developed accurately by simulating all ten common criteria of the disease related to the wrist. Results from the finite element (FE) analyses showed that the RA model produced three times higher contact pressure at the articulations compared to the healthy model. Normal physiological load transfer also changed from predominantly through the radial side to an increased load transfer approximately 5% towards the ulnar. Based on an extensive literature search, this is the first ever reported work that simulates the pathological conditions of the rheumatoid arthritis of the wrist joint.
    Matched MeSH terms: Cartilage, Articular/physiopathology*
  3. Ude CC, Ng MH, Chen CH, Htwe O, Amaramalar NS, Hassan S, et al.
    Osteoarthritis Cartilage, 2015 Aug;23(8):1294-306.
    PMID: 25887366 DOI: 10.1016/j.joca.2015.04.003
    OBJECTIVES: Our previous studies on osteoarthritis (OA) revealed positive outcome after chondrogenically induced cells treatment. Presently, the functional improvements of these treated OA knee joints were quantified followed by evaluation of the mechanical properties of the engineered cartilages.
    METHODS: Baseline electromyogram (EMGs) were conducted at week 0 (pre-OA), on the locomotory muscles of nine un-castrated male sheep (Siamese long tail cross) divided into controls, adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs), before OA inductions. Subsequent recordings were performed at week 7 and week 31 which were post-OA and post-treatments. Afterwards, the compression tests of the regenerated cartilage were performed.
    RESULTS: Post-treatment EMG analysis revealed that the control sheep retained significant reductions in amplitudes at the right medial gluteus, vastus lateralis and bicep femoris, whereas BMSCs and ADSCs samples had no further significant reductions (P < 0.05). Grossly and histologically, the treated knee joints demonstrated the presence of regenerated neo cartilages evidenced by the fluorescence of PKH26 tracker. Based on the International Cartilage Repair Society scores (ICRS), they had significantly lower grades than the controls (P < 0.05). The compression moduli of the native cartilages and the engineered cartilages differed significantly at the tibia plateau, patella femoral groove and the patella; whereas at the medial femoral condyle, they had similar moduli of 0.69 MPa and 0.40-0.64 MPa respectively. Their compression strengths at all four regions were within ±10 MPa.
    CONCLUSION: The tissue engineered cartilages provided evidence of functional recoveries associated to the structural regenerations, and their mechanical properties were comparable with the native cartilage.
    KEYWORDS: Cartilage; Cell therapy; Function; Osteoarthritis; Regeneration
    Matched MeSH terms: Cartilage, Articular/physiopathology
  4. Ude CC, Shamsul BS, Ng MH, Chen HC, Ohnmar H, Amaramalar SN, et al.
    Exp Gerontol, 2018 04;104:43-51.
    PMID: 29421350 DOI: 10.1016/j.exger.2018.01.020
    BACKGROUND: Hyaline articular cartilage, which protects the bones of diarthrodial joints from forces associated with load bearing, frictions, and impacts has very limited capacities for self-repair. Over the years, the trend of treatments has shifted to regenerations and researchers have been on the quest for a lasting regeneration. We evaluated the treatment of osteoarthritis by chondrogenically induced ADSCs and BMSCs for a long time functional recovery.

    METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of ACL and medial meniscus. Stem cells from sheep were induced to chondrogenic lineage. Test sheep received 5 mls single doses of 2 × 107 autologous PKH26-labelled ADSCs or BMSCs, while controls received basal medium. Functional recovery of the knees was evaluated via electromyography.

    RESULTS: Induced ADSCs had 625, 255, 393, 908, 409, 157 and 1062 folds increases of collagen I, collagen II, aggrecan, SOX9, cartilage oligomeric protein, chondroadherin and fibromodullin compare to uninduced cells, while BMSCs had 702, 657, 321, 276, 337, 233 and 1163 respectively; p = .001. Immunocytochemistry was positive for these chondrogenic markers. 12 months post-treatment, controls scored 4 in most regions using ICRS, while the treated had 8; P = .001. Regenerated cartilages were positive to PKH26 and demonstrated the presence of condensing cartilages on haematoxylin and eosin; and Safranin O. OA degenerations caused significant amplitude shift from right to left hind limb. After treatments, controls persisted with significant decreases; while treated samples regained balance.

    CONCLUSIONS: Both ADSCs and BMSCs had increased chondrogenic gene expressions using TGF-β3 and BMP-6. The treated knees had improved cartilage scores; PKH26 can provide elongated tracking, while EMG results revealed improved joint recoveries. These could be suitable therapies for osteoarthritis.

    Matched MeSH terms: Cartilage, Articular/physiopathology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links