Displaying all 17 publications

Abstract:
Sort:
  1. Chowdhury SM, Omar AR, Aini I, Hair-Bejo M, Jamaluddin AA, Md-Zain BM, et al.
    Arch Virol, 2003 Dec;148(12):2437-48.
    PMID: 14648297
    Specific-pathogen-free (SPF) chickens inoculated with low passage Chicken anaemia virus (CAV), SMSC-1 and 3-1 isolates produced lesions suggestive of CAV infection. Repeated passages of the isolates in cell culture until passage 60 (P60) and passage 123 produced viruses that showed a significantly reduced level of pathogenicity in SPF chickens compared to the low passage isolates. Sequence comparison indicated that nucleotide changes in only the coding region of the P60 passage isolates were thought to contribute to virus attenuation. Phylogenetic analysis indicated that SMSC-1 and 3-1 were highly divergent, but their P60 passage derivatives shared significant homology to a Japanese isolate A2.
    Matched MeSH terms: Capsid Proteins/chemistry
  2. Jeevanandam J, Pal K, Danquah MK
    Biochimie, 2019 Feb;157:38-47.
    PMID: 30408502 DOI: 10.1016/j.biochi.2018.11.001
    Viruses are considered as natural nanomaterials as they are in the size range of 20-500 nm with a genetical material either DNA or RNA, which is surrounded by a protein coat capsid. Recently, the field of virus nanotechnology is gaining significant attention from researchers. Attention is given to the utilization of viruses as nanomaterials for medical, biotechnology and energy applications. Removal of genetic material from the viral capsid creates empty capsid for drug incorporation and coating the capsid protein crystals with antibodies, enzymes or aptamers will enhance their targeted drug deliver efficiency. Studies reported that these virus-like nanoparticles have been used in delivering drugs for cancer. It is also used in imaging and sensory applications for various diseases. However, there is reservation among researchers to utilize virus-like nanoparticles in targeted delivery of genes in gene therapy, as there is a possibility of using virus-like nanoparticles for targeted gene delivery. In addition, other biomedical applications that are explored using virus-like nanoparticles and the probable mechanism of delivering genes.
    Matched MeSH terms: Capsid Proteins/chemistry*
  3. Aljabali AAA, Alzoubi L, Hamzat Y, Alqudah A, Obeid MA, Al Zoubi MS, et al.
    Comb Chem High Throughput Screen, 2021;24(10):1557-1571.
    PMID: 32928083 DOI: 10.2174/1386207323666200914110012
    BACKGROUND: Virus nanoparticles have been extensively studied over the past decades for theranostics applications. Viruses are well-characterized, naturally occurring nanoparticles that can be produced in high quantity with a high degree of similarity in both structure and composition.

    OBJECTIVES: The plant virus Cowpea Mosaic Virus (CPMV) has been innovatively used as a nanoscaffold. Utilization of the internal cavity of empty Virus-Like Particles (VLPs) for the inclusion of therapeutics within the capsid has opened many opportunities in drug delivery and imaging applications.

    METHODS: The encapsidation of magnetic materials and anticancer drugs was achieved. SuperscriptCPMV denotes molecules attached to the external surface of CPMV and CPMVSubscript denotes molecules within the interior of the capsid.

    RESULTS: Here, the generation of novel VLPs incorporating iron-platinum nanoparticles TCPMVFePt and cisplatin (Cis) (TCPMVCis) is reported. TCPMVCis exhibited a cytotoxic IC50 of TCPMVCis on both A549 and MDA-MB-231 cell lines of 1.8 μM and 3.9 μM, respectively after 72 hours of incubation. The TCPMVFePt were prepared as potential MRI contrast agents.

    CONCLUSION: Cisplatin loaded VLP (TCPMVCis) is shown to enhance cisplatin cytotoxicity in cancer cell lines with its potency increased by 2.3-folds.

    Matched MeSH terms: Capsid Proteins/chemistry*
  4. Roberts R, Yee PTI, Mujawar S, Lahiri C, Poh CL, Gatherer D
    Sci Rep, 2019 04 01;9(1):5427.
    PMID: 30931960 DOI: 10.1038/s41598-019-41662-8
    Enterovirus A71 (EV-A71) is an emerging pathogen in the Enterovirus A species group. EV-A71 causes hand, foot and mouth disease (HFMD), with virulent variants exhibiting polio-like acute flaccid paralysis and other central nervous system manifestations. We analysed all enterovirus A71 complete genomes with collection dates from 2008 to mid-2018. All sub-genotypes exhibit a strong molecular clock with omega (dN/dS) suggesting strong purifying selection. In sub-genotypes B5 and C4, positive selection can be detected at two surface sites on the VP1 protein, also detected in positive selection studies performed prior to 2008. Toggling of a limited repertoire of amino acids at these positively selected residues over the last decade suggests that EV-A71 may be undergoing a sustained frequency-dependent selection process for immune evasion, raising issues for vaccine development. These same sites have also been previously implicated in virus-host binding and strain-associated severity of HFMD, suggesting that immune evasion may be an indirect driver for virulence (154 words).
    Matched MeSH terms: Capsid Proteins/chemistry
  5. Lalani S, Masomian M, Poh CL
    Int J Mol Sci, 2021 Aug 15;22(16).
    PMID: 34445463 DOI: 10.3390/ijms22168757
    Enterovirus A71 (EV-A71) is a major neurovirulent agent capable of causing severe hand, foot and mouth disease (HFMD) associated with neurological complications and death. Currently, no FDA-approved antiviral is available for the treatment of EV-A71 infections. The flavonoid silymarin was shown to exert virucidal effects, but the binding site on the capsid was unknown. In this study, the ligand interacting site of silymarin was determined in silico and validated in vitro. Moreover, the potential of EV-A71 to develop resistance against silymarin was further evaluated. Molecular docking of silymarin with the capsid of EV-A71 indicated that silymarin binds to viral protein 1 (VP1) of EV-A71, specifically at the GH loop of VP1. The in vitro binding of silymarin with VP1 of EV-A71 was validated using recombinant VP1 through ELISA competitive binding assay. Continuous passaging of EV-A71 in the presence of silymarin resulted in the emergence of a mutant carrying a substitution of isoleucine by threonine (I97T) at position 97 of the BC loop of EV-A71. The mutation was speculated to overcome the inhibitory effects of silymarin. This study provides functional insights into the underlying mechanism of EV-A71 inhibition by silymarin, but warrants further in vivo evaluation before being developed as a potential therapeutic agent.
    Matched MeSH terms: Capsid Proteins/chemistry*
  6. Selvaraj BA, Mariatulqabtiah AR, Ho KL, Ng CL, Yong CY, Tan WS
    Int J Mol Sci, 2021 Aug 13;22(16).
    PMID: 34445426 DOI: 10.3390/ijms22168725
    The causative agent of white tail disease (WTD) in the giant freshwater prawn is Macrobrachium rosenbergii nodavirus (MrNV). The recombinant capsid protein (CP) of MrNV was previously expressed in Escherichia coli, and it self-assembled into icosahedral virus-like particles (VLPs) with a diameter of approximately 30 nm. Extensive studies on the MrNV CP VLPs have attracted widespread attention in their potential applications as biological nano-containers for targeted drug delivery and antigen display scaffolds for vaccine developments. Despite their advantageous features, the recombinant MrNV CP VLPs produced in E. coli are seriously affected by protease degradations, which significantly affect the yield and stability of the VLPs. Therefore, the aim of this study is to enhance the stability of MrNV CP by modulating the protease degradation activity. Edman degradation amino acid sequencing revealed that the proteolytic cleavage occurred at arginine 26 of the MrNV CP. The potential proteases responsible for the degradation were predicted in silico using the Peptidecutter, Expasy. To circumvent proteolysis, specific protease inhibitors (PMSF, AEBSF and E-64) were tested to reduce the degradation rates. Modulation of proteolytic activity demonstrated that a cysteine protease was responsible for the MrNV CP degradation. The addition of E-64, a cysteine protease inhibitor, remarkably improved the yield of MrNV CP by 2.3-fold compared to the control. This innovative approach generates an economical method to improve the scalability of MrNV CP VLPs using individual protease inhibitors, enabling the protein to retain their structural integrity and stability for prominent downstream applications including drug delivery and vaccine development.
    Matched MeSH terms: Capsid Proteins/chemistry
  7. Chong WL, Chupradit K, Chin SP, Khoo MM, Khor SM, Tayapiwatana C, et al.
    Molecules, 2021 Sep 20;26(18).
    PMID: 34577167 DOI: 10.3390/molecules26185696
    Protein-protein interaction plays an essential role in almost all cellular processes and biological functions. Coupling molecular dynamics (MD) simulations and nanoparticle tracking analysis (NTA) assay offered a simple, rapid, and direct approach in monitoring the protein-protein binding process and predicting the binding affinity. Our case study of designed ankyrin repeats proteins (DARPins)-AnkGAG1D4 and the single point mutated AnkGAG1D4-Y56A for HIV-1 capsid protein (CA) were investigated. As reported, AnkGAG1D4 bound with CA for inhibitory activity; however, it lost its inhibitory strength when tyrosine at residue 56 AnkGAG1D4, the most key residue was replaced by alanine (AnkGAG1D4-Y56A). Through NTA, the binding of DARPins and CA was measured by monitoring the increment of the hydrodynamic radius of the AnkGAG1D4-gold conjugated nanoparticles (AnkGAG1D4-GNP) and AnkGAG1D4-Y56A-GNP upon interaction with CA in buffer solution. The size of the AnkGAG1D4-GNP increased when it interacted with CA but not AnkGAG1D4-Y56A-GNP. In addition, a much higher binding free energy (∆GB) of AnkGAG1D4-Y56A (-31 kcal/mol) obtained from MD further suggested affinity for CA completely reduced compared to AnkGAG1D4 (-60 kcal/mol). The possible mechanism of the protein-protein binding was explored in detail by decomposing the binding free energy for crucial residues identification and hydrogen bond analysis.
    Matched MeSH terms: Capsid Proteins/chemistry
  8. Lim CS, Goh SL, Kariapper L, Krishnan G, Lim YY, Ng CC
    Clin Chim Acta, 2015 Aug 25;448:206-10.
    PMID: 26164385 DOI: 10.1016/j.cca.2015.07.008
    Development of indirect enzyme-linked immunosorbent assays (ELISAs) often utilizes synthetic peptides or recombinant proteins from Escherichia coli as immobilized antigens. Because inclusion bodies (IBs) formed during recombinant protein expression in E. coli are commonly thought as misfolded aggregates, only refolded proteins from IBs are used to develop new or in-house diagnostic assays. However, the promising utilities of IBs as nanomaterials and immobilized enzymes as shown in recent studies have led us to explore the potential use of IBs of recombinant Epstein-Barr virus viral capsid antigen p18 (VCA p18) as immobilized antigens in ELISAs for serologic detection of nasopharyngeal carcinoma (NPC).
    Matched MeSH terms: Capsid Proteins/chemistry
  9. Ho KL, Gabrielsen M, Beh PL, Kueh CL, Thong QX, Streetley J, et al.
    PLoS Biol, 2018 Oct;16(10):e3000038.
    PMID: 30346944 DOI: 10.1371/journal.pbio.3000038
    Macrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, and thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here, we present an atomic-resolution model of the MrNV capsid protein (CP), calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional (3D) image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure, confirming the biological relevance of the VLP structure. Our data revealed that unlike other known nodavirus structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T = 3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae: 1) an extensive network of N-terminal arms (NTAs) lines the capsid interior, forming long-range interactions to lace together asymmetric units; 2) the capsid shell is stabilised by 3 pairs of Ca2+ ions in each asymmetric unit; 3) the protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the taxonomic classification of MrNV.
    Matched MeSH terms: Capsid Proteins/chemistry
  10. Tan CS, Cardosa MJ
    Arch Virol, 2007;152(6):1069-73.
    PMID: 17318736
    Human enterovirus 71 has emerged as an important pathogen of children in the Asia Pacific region, and it may be important to consider the development of a vaccine against this virus. Human cord serum was used as a source of neutralizing antibodies to determine whether the N- or C-terminal half of the VP1 capsid protein was more likely to harbour neutralizing determinants. Cord sera from 205 individuals were tested for neutralizing antibodies against human enterovirus 71 in an indirect ELISA against recombinant VP1 antigen as well as the N- and C-terminal portions of VP1 antigen. High-titred human neutralizing antibodies were significantly more reactive with the N-terminal half of VP1 than weak or negative sera. The N-terminal half of human enterovirus 71 is likely to have important neutralizing antibody determinants and should be investigated further in vaccine development efforts.
    Matched MeSH terms: Capsid Proteins/chemistry
  11. Yap CF, Tan WS, Sieo CC, Tey BT
    Biotechnol Prog, 2013 Mar-Apr;29(2):564-7.
    PMID: 23364925 DOI: 10.1002/btpr.1697
    NP(Δc375) is a truncated version of the nucleocapsid protein of Newcastle disease virus (NDV) which self-assembles into a long helical structure. A packed bed anion exchange chromatography (PB-AEC), SepFastTM Supor Q pre-packed column, was used to purify NP(Δc375) from clarified feedstock. This PB-AEC column adsorbed 76.2% of NP(Δc375) from the clarified feedstock. About 67.5% of the adsorbed NP(Δc375) was successfully eluted from the column by applying 50 mM Tris-HCl elution buffer supplemented with 0.5 M NaCl at pH 7. Thus, a recovery yield of 51.4% with a purity of 76.7% which corresponds to a purification factor of 6.5 was achieved in this PB-AEC operation. Electron microscopic analysis revealed that the helical structure of the NP(Δc375) purified by SepFast(TM) Supor Q pre-packed column was as long as 490 nm and 22-24 nm in diameter. The antigenicity of the purified NP(Δc375) was confirmed by enzyme-linked immunosorbent assay.
    Matched MeSH terms: Capsid Proteins/chemistry
  12. Guan J, He Z, Qin M, Deng X, Chen J, Duan S, et al.
    BMC Infect Dis, 2021 Feb 10;21(1):166.
    PMID: 33568111 DOI: 10.1186/s12879-021-05823-3
    BACKGROUND: An unexpected dengue outbreak occurred in Hunan Province in 2018. This was the first dengue outbreak in this area of inland China, and 172 cases were reported.

    METHODS: To verify the causative agent of this outbreak and characterise the viral genes, the genes encoding the structural proteins C/prM/E of viruses isolated from local residents were sequenced followed by mutation and phylogenetic analysis. Recombination, selection pressure, potential secondary structure and three-dimensional structure analyses were also performed.

    RESULTS: Phylogenetic analysis revealed that all epidemic strains were of the cosmopolitan DENV-2 genotype and were most closely related to the Zhejiang strain (MH010629, 2017) and then the Malaysia strain (KJ806803, 2013). Compared with the sequence of DENV-2SS, 151 base substitutions were found in the sequences of 89 isolates; these substitutions resulted in 20 non-synonymous mutations, of which 17 mutations existed in all samples (two in the capsid protein, six in the prM/M proteins, and nine in the envelope proteins). Moreover, amino acid substitutions at the 602nd (E322:Q → H) and 670th (E390: N → S) amino acids may have enhanced the virulence of the epidemic strains. One new DNA binding site and five new protein binding sites were observed. Two polynucleotide binding sites and seven protein binding sites were lost in the epidemic strains compared with DENV-2SS. Meanwhile, five changes were found in helical regions. Minor changes were observed in helical transmembrane and disordered regions. The 429th amino acid of the E protein switched from a histamine (positively charged) to an asparagine (neutral) in all 89 isolated strains. No recombination events or positive selection pressure sites were observed. To our knowledge, this study is the first to analyse the genetic characteristics of epidemic strains in the first dengue outbreak in Hunan Province in inland China.

    CONCLUSIONS: The causative agent is likely to come from Zhejiang Province, a neighbouring province where dengue fever broke out in 2017. This study may help clarify the intrinsic geographical relatedness of DENV-2 and contribute to further research on pathogenicity and vaccine development.

    Matched MeSH terms: Capsid Proteins/chemistry
  13. Lee KW, Tey BT, Ho KL, Tejo BA, Tan WS
    Mol Pharm, 2012 Sep 4;9(9):2415-23.
    PMID: 22775561 DOI: 10.1021/mp200389t
    Cell-internalizing peptides (CIPs) can be used to mediate specific delivery of nanoparticles across cellular membrane. The objective of this study was to develop a display technique using hepatitis B virus (HBV) capsid-binding peptide as a "nanoglue" to present CIPs on HBV nanoparticles for cell-targeting delivery. A CIP was selected from a phage display library and cross-linked specifically at the tips of the spikes of the HBV capsid nanoparticle via the "nanoglue" by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS). Fluorescent oligonucleotides packaged in the nanoparticles and the fluorescein molecules conjugated on the nanoparticles were delivered to cells by using this display technique. This study demonstrated a proof of principle for cell-targeting delivery via "nanoglue" bioconjugation.
    Matched MeSH terms: Capsid Proteins/chemistry
  14. Tee HK, Tan CW, Yogarajah T, Lee MHP, Chai HJ, Hanapi NA, et al.
    PLoS Pathog, 2019 11;15(11):e1007863.
    PMID: 31730673 DOI: 10.1371/journal.ppat.1007863
    Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71.
    Matched MeSH terms: Capsid Proteins/chemistry
  15. Tan CW, Chan YF, Sim KM, Tan EL, Poh CL
    PLoS One, 2012;7(5):e34589.
    PMID: 22563456 DOI: 10.1371/journal.pone.0034589
    Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.
    Matched MeSH terms: Capsid Proteins/chemistry*
  16. Hsieh CF, Jheng JR, Lin GH, Chen YL, Ho JY, Liu CJ, et al.
    Emerg Microbes Infect, 2020 Dec;9(1):1194-1205.
    PMID: 32397909 DOI: 10.1080/22221751.2020.1767512
    Enterovirus A71 (EV-A71), a positive-stranded RNA virus of the Picornaviridae family, may cause neurological complications or fatality in children. We examined specific factors responsible for this virulence using a chemical genetics approach. Known compounds from an anti-EV-A71 herbal medicine, Salvia miltiorrhiza (Danshen), were screened for anti-EV-A71. We identified a natural product, rosmarinic acid (RA), as a potential inhibitor of EV-A71 by cell-based antiviral assay and in vivo mouse model. Results also show that RA may affect the early stage of viral infection and may target viral particles directly, thereby interfering with virus-P-selectin glycoprotein ligand-1 (PSGL1) and virus-heparan sulfate interactions without abolishing the interaction between the virus and scavenger receptor B2 (SCARB2). Sequencing of the plaque-purified RA-resistant viruses revealed a N104K mutation in the five-fold axis of the structural protein VP1, which contains positively charged amino acids reportedly associated with virus-PSGL1 and virus-heparan sulfate interactions via electrostatic attraction. The plasmid-derived recombinant virus harbouring this mutation was confirmed to be refractory to RA inhibition. Receptor pull-down showed that this non-positively charged VP1-N104 is critical for virus binding to heparan sulfate. As the VP1-N104 residue is conserved among different EV-A71 strains, RA may be useful for inhibiting EV-A71 infection, even for emergent virus variants. Our study provides insight into the molecular mechanism of virus-host interactions and identifies a promising new class of inhibitors based on its antiviral activity and broad spectrum effects against a range of EV-A71.
    Matched MeSH terms: Capsid Proteins/chemistry
  17. Panda S, Banik U, Adhikary AK
    Infect Genet Evol, 2020 11;85:104439.
    PMID: 32585339 DOI: 10.1016/j.meegid.2020.104439
    Human adenovirus type 3 (HAdV-3) encompasses 15-87% of all adenoviral respiratory infections. The significant morbidity and mortality, especially among the neonates and immunosuppressed patients, demand the need for a vaccine or a targeted antiviral against this type. However, due to the existence of multiple hexon variants (3Hv-1 to 3Hv-25), the selection of vaccine strains of HAdV-3 is challenging. This study was designed to evaluate HAdV-3 hexon variants for the selection of potential vaccine candidates and the use of hexon gene as a target for designing siRNA that can be used as a therapy. Based on the data of worldwide distribution, duration of circulation, co-circulation and their percentage among all the variants, 3Hv-1 to 3Hv-4 were categorized as the major hexon variants. Phylogenetic analysis and the percentage of homology in the hypervariable regions followed by multi-sequence alignment, zPicture analysis and restriction enzyme analysis were carried out. In the phylogram, the variants were arranged in different clusters. The HVR encoding regions of hexon of 3Hv-1 to 3Hv-4 showed 16 point mutations resulting in 12 amino acids substitutions. The homology in HVRs was 81.81-100%. Therefore, the major hexon variants are substantially different from each other which justifies their inclusion as the potential vaccine candidates. Interestingly, despite the significant differences in the DNA sequence, there were many conserved areas in the HVRs, and we have designed functional siRNAs form those locations. We have also designed immunogenic vaccine peptide epitopes from the hexon protein using bioinformatics prediction tool. We hope that our developed siRNAs and immunogenic vaccine peptide epitopes could be used in the future development of siRNA-based therapy and designing a vaccine against HAdV-3.
    Matched MeSH terms: Capsid Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links