Displaying all 3 publications

Abstract:
Sort:
  1. Chew SY, Cheah YK, Seow HF, Sandai D, Than LT
    J Appl Microbiol, 2015 May;118(5):1180-90.
    PMID: 25688886 DOI: 10.1111/jam.12772
    This study investigates the antagonistic effects of the probiotic strains Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 against vulvovaginal candidiasis (VVC)-causing Candida glabrata.
    Matched MeSH terms: Candida glabrata/growth & development*
  2. Chew SY, Cheah YK, Seow HF, Sandai D, Than LT
    Anaerobe, 2015 Aug;34:132-8.
    PMID: 26028405 DOI: 10.1016/j.anaerobe.2015.05.009
    A conspicuous new concept of pathogens living as the microbial societies in the human host rather than free planktonic cells has raised considerable concerns among scientists and clinicians. Fungal biofilms are communities of cells that possess distinct characteristic such as increased resistance to the immune defence and antimycotic agents in comparison to their planktonic cells counterpart. Therefore, inhibition of the biofilm may represent a new paradigm for antifungal development. In this study, we aim to evaluate the in vitro modulation of vulvovaginal candidiasis (VVC)-causing Candida glabrata biofilms using probiotic lactobacilli strains. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 were shown to have completely inhibited C. glabrata biofilms and the results were corroborated by scanning electron microscopy (SEM), which revealed scanty structures of the mixed biofilms of C. glabrata and probiotic lactobacilli strains. In addition, biofilm-related C. glabrata genes EPA6 and YAK1 were downregulated in response to the probiotic lactobacilli challenges. The present study suggested that probiotic L. rhamnosus GR-1 and L. reuteri RC-14 strains inhibited C. glabrata biofilm by partially impeding the adherence of yeast cells and the effect might be contributed by the secretory compounds produced by these probiotic lactobacilli strains. Further investigations are required to examine and identify the biofilm inhibitory compounds and the mechanism of probiotic actions of these lactobacilli strains.
    Matched MeSH terms: Candida glabrata/growth & development
  3. Nordin MA, Wan Harun WH, Abdul Razak F, Musa MY
    Int J Oral Sci, 2014 Mar;6(1):15-21.
    PMID: 24406634 DOI: 10.1038/ijos.2013.97
    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL(-1); (iii) 3 mg⋅mL(-1); and (iv) 6 mg⋅mL(-1). The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (P<0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.44×10(6) to 1.78×10(6) viable cell counts (CFU)⋅mL(-1). SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity.
    Matched MeSH terms: Candida glabrata/growth & development
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links