Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Rosli NA, Aziz HA, Selamat MR, Lim LLP
    J Environ Manage, 2020 Jun 01;263:110420.
    PMID: 32883483 DOI: 10.1016/j.jenvman.2020.110420
    This study proposed the recycling of sewage sludge (SS) and red gypsum (RG) as potential temporary landfill cover materials. Mixtures with different SS and RG compositions were prepared and tested in determining the most suitable design mix based on the resulting physical, mechanical, and geotechnical properties, namely the hydraulic conductivity, compressive strength, and plasticity. A maximum compressive strength of 524 kPa was achieved for the optimum SS:RG composition of 1:1, corresponding to Ca:Si composition of 2.5:1, which was appropriate to form the calcium silicate hydrate (CSH) gel. The SS and RG compositions did not affect the hydraulic conductivity, which was in the order 10-5 cm/s for all mixtures. Mixtures with RG greater than SS in composition exhibited plastic behaviour due to the Fe content in the RG, which helped minimize the risk of cracking. The optimum mixture had compressive strength greater than the specified minimum of 345 kPa, medium hydraulic conductivity, and moderate plasticity, thus appropriate for application as an alternative material for the temporary landfill cover in the tropics.
    Matched MeSH terms: Calcium Sulfate*
  2. Khalaf S, Ariffin Z, Husein A, Reza F
    J Prosthodont, 2015 Jul;24(5):419-23.
    PMID: 25219956 DOI: 10.1111/jopr.12213
    PURPOSE: This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified.

    MATERIALS AND METHODS: A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05.

    RESULTS: Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers.

    CONCLUSIONS: Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold.

    Matched MeSH terms: Calcium Sulfate*
  3. Goh YF, Akram M, Alshemary AZ, Hussain R
    PMID: 26042687 DOI: 10.1016/j.msec.2015.04.013
    Calcium sulfate-bioactive glass (CSBG) composites doped with 5, 10 and 20 mol% Fe were synthesized using quick alkali sol-gel method. X-ray diffraction (XRD) data of samples heated at 700 °C revealed the presence of anhydrite, while field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) characterization confirmed the formation of nano-sized CSBGs. The UV-vis studies confirmed that the main iron species in 5% Fe and 10% Fe doped CSBGs were tetrahedral Fe(III) whereas that in 20% Fe doped CSBG were extra-framework FeOx oligomers or iron oxide phases. Measurement of magnetic properties of the samples by vibrating sample magnetometer (VSM) showed very narrow hysteresis loop with zero coercivity and remanence for 10% Fe and 20% Fe doped CSBG, indicating that they are superparamagnetic in nature. All samples induced the formation of apatite layer with Ca/P ratio close to the stoichiometric HA in simulated body fluid (SBF) assessment.
    Matched MeSH terms: Calcium Sulfate/chemistry*
  4. Sahibin AR, Shamshuddin J, Fauziah CI, Radziah O, Wan Mohd Razi I, Enio MSK
    Sci Total Environ, 2019 Feb 20;652:573-582.
    PMID: 30368186 DOI: 10.1016/j.scitotenv.2018.10.232
    A study was conducted in an oil palm plantation in Peninsular Malaysia to elucidate the effects of applying Magnesium Rich Synthetic Gypsum (MRSG), a by-product of chemical plant, on the chemical properties of soil, the uptake of heavy metals by the palm trees, the oil quality and its impact on the surrounding environment. The results showed that MRSG application onto soil cropped to oil palm could bring positive impact in terms of soil chemical properties and oil palm production. The quality of the oil was not significantly affected by the continuous MRSG application as shown by the low heavy metals and trace elements of concern content (Cu: 0.062 mg/kg; Fe: 2.10 mg/kg; Mn: 1.93 mg/kg; Pb: 0.006 mg/kg; Zn: 0.103 mg/kg; Cr: 0.354 mg/kg; Ni: 0.037 mg/kg). From the I-geochem index, the soil was found to have values ranging from -3.81 to -1.03 which is considered as uncontaminated. Further, its application did not result in negative impact on the surrounding environment; hence, the quality of the soil and surface water in the plantation and/or the surrounding area remained intact. Phytotoxic elements in the oil palm tissue (As: 0.12 mg/kg; Se: 0.05 mg/kg; Zn: 1.48 mg/kg; Ce: 0.47 mg/kg; La: 0.26 mg/kg; Sr: 3.03 mg/kg) and cytotoxic elements in the oil were below the acceptable limit. Based on the results of the Environmental Monitoring out during the period of the study, it was concluded that application of the by-product of the chemical plant as a source of Mg to enhance soil fertility in the oil palm plantation was considered safe and sustainable. The effects of applying MRSG and Chinese kieserite was almost similar. So, MRSG can be used as a possible source of Mg to replace Chinese kieserite for oil palm production on the Ultisols in Peninsular Malaysia.
    Matched MeSH terms: Calcium Sulfate/chemistry*
  5. Mohammed AU, Aris AZ, Ramli MF, Isa NM, Arabi AS, Jabbo JN
    Environ Geochem Health, 2023 Jun;45(6):3891-3906.
    PMID: 36609946 DOI: 10.1007/s10653-022-01468-6
    Multiple interactions of geogenic and anthropogenic activities can trigger groundwater pollution in the tropical savanna watershed. These interactions and resultant contamination have been studied using applied geochemical modeling, conventional hydrochemical plots, and multivariate geochemometric methods, and the results are presented in this paper. The high alkalinity values recorded for the studied groundwater samples might emanate from the leaching of carbonate soil derived from limestone coupled with low rainfall and high temperature in the area. The principal component analysis (PCA) unveils three components with an eigenvalue > 1 and a total dataset variance of 67.37%; this implies that the temporary hardness of the groundwater and water-rock interaction with evaporite minerals (gypsum, halite, calcite, and trona) is the dominant factor affecting groundwater geochemistry. Likewise, the PCA revealed anthropogenic contamination by discharging [Formula: see text] [Formula: see text][Formula: see text] and [Formula: see text] from agricultural activities and probable sewage leakages. Hierarchical cluster analysis (HCA) also revealed three clusters; cluster I reflects the dissolution of gypsum and halite with a high elevated load of [Formula: see text] released by anthropogenic activities. However, cluster II exhibited high [Formula: see text] and [Formula: see text] loading in the groundwater from weathering of bicarbonate and sylvite minerals. Sulfate ([Formula: see text]) dominated cluster III mineralogy resulting from weathering of anhydrite. The three clusters in the Maiganga watershed indicated anhydrite, gypsum, and halite undersaturation. These results suggest that combined anthropogenic and natural processes in the study area are linked with saturation indexes that regulate the modification of groundwater quality.
    Matched MeSH terms: Calcium Sulfate/analysis
  6. Mohandas, K., Nur Farhana, M.Y., Vikram, M., Sundaresan, A.N., Potturi Gowri, S., Mahendran, J.
    Medicine & Health, 2014;9(1):80-84.
    MyJurnal
    Trophic ulcers have emerged as one of the major complications following diabetes mellitus (DM) and Hansen’s diseases (HD). In this case series, the study attempted total contact plaster boot using a readily available plaster of Paris to treat trophic ulcer for 10 subjects. A total of five subjects with DM and five subjects with HD were included based on the study criteria. Pre and post test measure of wound measurement size following total contact plaster boot were taken as an outcome measure. All ten subjects showed decrease in size of wound following fifteen days of treatment. No adverse effects were associated with this type of treatment. Subjects with trophic ulcer may benefit from the application of total contact plaster boot.
    Matched MeSH terms: Calcium Sulfate
  7. Ulfat W, Mohyuddin A, Amjad M, Othman MHD, Gikas P, Kurniawan TA
    J Environ Manage, 2023 Dec 01;347:119129.
    PMID: 37778073 DOI: 10.1016/j.jenvman.2023.119129
    Buffing dust, generated from tannery industries, is a source of air pollution in Pakistan. Valorization of the waste into another useful material is important to deal with the environmental pollution, while reducing waste disposal costs in landfills. To demonstrate its technological strength, this work fabricates a thermal insulation material made of plaster of Paris and the buffing dust (from tanning waste) in the form of a composite with superior mechanical properties and low thermal conductivity. Buffing dust with concentrations ranging from 5 to 20% (w/w) were loaded in the composite. The samples synthesized were made slurry of plaster of Paris, buffing dust, and water at ambient temperature. The physico-mechanical properties of composite were analyzed. It was found that the composite had better thermal insulation properties than the panels of the plaster of Paris. Its thermal conductivity was reduced to 15% after adding buffing dust (20% w/w). All the materials had physico-chemical properties like tensile strength (0.02 MPa and 0.06 MPa), density (700-400 kg/m3), water absorption (5.2-8.6%) and thermal conductivity (0.17000-0.09218 W/m-K). Thermogravimetric analysis showed that the material was thermally stable at temperatures ranging from 145 to 177 °C, while FT-IR results revealed that the composite contained O-H, N-H, and CO functional groups. SEM analysis displayed that the composite's homogeneity was reduced with low voids due to buffing dust addition, while EDX analysis showed that the composite contained 23.62% of S, 26.76% of Ca, 49.2% of O and 0.42% of C. This implies that buffing dust could be recycled to manufacture heat insulation materials for construction sector to reduce air pollution, while minimizing energy consumption. By integrating the buffing dust from tanning waste and the plaster of Paris as a composite for construction sector, this work promotes the recycling of unused waste, while saving public funds. Instead of paying landfill fees and polluting soil, the waste may be recycled at lower cost, while reducing environmental damage.
    Matched MeSH terms: Calcium Sulfate
  8. Ayanda AF, Jusop S, Ishak CF, Othman R
    PLoS One, 2020;15(6):e0234045.
    PMID: 32544208 DOI: 10.1371/journal.pone.0234045
    A study was conducted to determine the impact of applying different sources of Mg, namely kieserite, ground magnesium limestone (GML) and Mg-rich synthetic gypsum (MRSG) on an acid tropical soil, oil palm growth and production. Besides high amount of Mg and Ca, MRSG contains S. Exchangeable Ca in the untreated soil of the plantation was 0.64 cmolc kg-1, but its critical level to sustain oil palm growth was 0.9 cmolc kg-1. MRSG was applied in the plantation as Mg-fertilizer; however, since Ca is also a limiting nutrient, oil palm growth was correlated (r = 0.69) with Ca supplied by the MRSG. Mg needed to sustain oil palm production is normally supplied by kieserite. Its requirement can be met at a lower cost compared to that of the kieserite by using MRSG. Due to MRSG treatment, exchangeable Ca in the soil increased steadily to satisfy the requirement of oil palm for fruit bunches production. From the glasshouse and field study, it was observed that MRSG applied at 1.5 times the recommended rate gave results comparable to that of the kieserite. MRSG treatment resulted in the increase of soil pH to >5 that precipitated Al3+ as inert Al-hydroxides, which eventually enhanced oil palm seedlings growth. Thus, MRSG can also replace GML to increase soil pH and satisfy the Ca and Mg requirement of oil palm. It can be concluded that MRSG has the potential to be used as a source of Mg as well as Ca for oil palm grown on acidic soil.
    Matched MeSH terms: Calcium Sulfate/pharmacology*; Calcium Sulfate/chemistry*
  9. Mahshim N, Reza F, Omar NS
    J Conserv Dent, 2013 Jul;16(4):331-5.
    PMID: 23956536 DOI: 10.4103/0972-0707.114364
    To evaluate physical properties and cytotoxicity of pure gypsum-based (pure-GYP) and experimental gypsum-based biomaterials mixed with polyacrylic acid (Gyp-PA). The results were compared with calcium hydroxide (CH) and glass ionomer cement (GIC) for application as base/liner materials.
    Matched MeSH terms: Calcium Sulfate
  10. Eghbali Babadi F, Yunus R, Masoudi Soltani S, Shotipruk A
    ACS Omega, 2021 May 04;6(17):11144-11154.
    PMID: 34056270 DOI: 10.1021/acsomega.0c04353
    In this study, a mineral-based coated urea was fabricated in a rotary pan coater using a mixture of gypsum/sulfur/zeolite (G25S25Z50) as an effective and low-cost coating material. The effects of different coating compositions on the dissolution rate of urea and the crushing strength and morphology of the coated urea were investigated. A 25:25:50 (wt %) mixture of gypsum/sulfur/zeolite (G25S25Z50) increased the coating effectiveness to 34.1% with the highest crushing strength (31.06 N). The effectiveness of coated urea was further improved to 46.6% with the addition of a microcrystalline wax (3%) as a sealant. Furthermore, the release mechanisms of various urea fertilizers were determined by fitting the release profiles with six mathematical models, namely, the zeroth-order, first-order, second-order, Higuchi, Ritger & Peppas, and Kopcha models. The results showed that the release mechanism of the uncoated urea and all other coated urea followed the Ritger & Peppas model, suggesting the diffusional release from nonswellable delivery systems. In addition, due to the increased mass-transfer resistance, the kinetic constant was decreased from 0.2233 for uncoated urea to 0.1338 for G25S25Z50-coated urea and was further decreased to 0.0985 when 3% Witcovar 146 sealant was applied.
    Matched MeSH terms: Calcium Sulfate
  11. Sarbon, N.M., Cheow, C.S., Kyaw. Z.W., Howell, N.K.
    MyJurnal
    The aims of this study were to examine the effect of salts (CaCl2, CaSO4 and MgSO4) on the rheological and thermal properties of gelatin extracted from the skins of tropical fishes, sin croaker (Johnius dussumeiri) and shortfin scad (Decapterus macrosoma). It was found that the melting temperatures of fish skin gelatins were increased by 1.5 times as compared to bovine gelatin which was only increased by 0.5 times after holding for 2 h at 5°C. The storage (G’) and loss (G”) modulus of fish skin gelatins were improved with the addition of calcium sulphate (CaSO4) and magnesium sulphate (MgSO4), respectively. However, the storage (G’) and loss (G”) modulus of gelatin solutions were decreased with the addition of calcium chloride (CaCl2). Magnesium sulphate (MgSO4) was found to be an effective salt to improve the bloom value, elastic and viscous moduli of the fish skin gelatin. This study showed that shortfin scad skin gelatin with salt addition possessed better thermal and rheological properties than sin croaker gelatin.
    Matched MeSH terms: Calcium Sulfate
  12. Ho W, Lin Seow L, Musawi A
    J Clin Transl Res, 2018 May 28;4(1):70-74.
    PMID: 30873496
    Background: The purpose of the present study was to investigate the effect of different viscosities of polyvinyl siloxane (PVS) impression materials on the accuracy of the stone die produced.

    Methods: A three-unit bridge master model was fabricated using cold-cure acrylic resin. Four combinations of different viscosities of PVS impression materials - regular body (monophase) alone, light body with regular body, light body with heavy body, and light body with putty - were used to make an impression of the master model. Ten impressions from each group were taken and Type IV gypsum stone was used to generate the dies. The dies were measured at the inter-abutment distance, occlusogingival length, and shoulder width with a measuring microscope and were compared with the master model using one-way analysis of variance and Tukey (honest significant difference) test.

    Results: Differences were found for inter-abutment distance between the master model and the light body with regular body and light body with putty dies (both P < 0.02). A difference was found for shoulder width between the master model and the regular body alone die (P = 0.01). No differences were found for occlusogingival distance (all P > 0.08).

    Conclusion: Results suggested inter-abutment distance was most accurate when using a PVS light body combination. Occlusogingival length was accurate using any of the studied PVS combinations, and shoulder width was more accurate when using the regular body PVS.

    Relevance for patients: These results should be considered when choosing the viscosity of the PVS to use for producing impressions of high accuracy and fabricating a well-fitting fixed prosthesis.

    Matched MeSH terms: Calcium Sulfate
  13. Farook TH, Rashid F, Jamayet NB, Abdullah JY, Dudley J, Khursheed Alam M
    J Prosthet Dent, 2022 Oct;128(4):830-836.
    PMID: 33642077 DOI: 10.1016/j.prosdent.2020.12.041
    STATEMENT OF PROBLEM: The anatomic complexity of the ear challenges conventional maxillofacial prosthetic rehabilitation. The introduction of specialized scanning hardware integrated into computer-aided design and computer-aided manufacturing (CAD-CAM) workflows has mitigated these challenges. Currently, the scanning hardware required for digital data acquisition is expensive and not readily available for prosthodontists in developing regions.

    PURPOSE: The purpose of this virtual analysis study was to compare the accuracy and precision of 3-dimensional (3D) ear models generated by scanning gypsum casts with a smartphone camera and a desktop laser scanner.

    MATERIAL AND METHODS: Six ear casts were fabricated from green dental gypsum and scanned with a laser scanner. The resultant 3D models were exported as standard tessellation language (STL) files. A stereophotogrammetry system was fabricated by using a motorized turntable and an automated microcontroller photograph capturing interface. A total of 48 images were captured from 2 angles on the arc (20 degrees and 40 degrees from the base of the turntable) with an image overlap of 15 degrees, controlled by a stepper motor. Ear 1 was placed on the turntable and captured 5 times with smartphone 1 and tested for precision. Then, ears 1 to 6 were scanned once with a laser scanner and with smartphones 1 and 2. The images were converted into 3D casts and compared for accuracy against their laser scanned counterparts for surface area, volume, interpoint mismatches, and spatial overlap. Acceptability thresholds were set at <0.5 mm for interpoint mismatches and >0.70 for spatial overlap.

    RESULTS: The test for smartphone precision in comparison with that of the laser scanner showed a difference in surface area of 774.22 ±295.27 mm2 (6.9% less area) and in volume of 4228.60 ±2276.89 mm3 (13.4% more volume). Both acceptability thresholds were also met. The test for accuracy among smartphones 1, 2, and the laser scanner showed no statistically significant differences (P>.05) in all 4 parameters among the groups while also meeting both acceptability thresholds.

    CONCLUSIONS: Smartphone cameras used to capture 48 overlapping gypsum cast ear images in a controlled environment generated 3D models parametrically similar to those produced by standard laser scanners.

    Matched MeSH terms: Calcium Sulfate
  14. Farzadi A, Solati-Hashjin M, Asadi-Eydivand M, Abu Osman NA
    PLoS One, 2014;9(9):e108252.
    PMID: 25233468 DOI: 10.1371/journal.pone.0108252
    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.
    Matched MeSH terms: Calcium Sulfate/chemistry
  15. Chandara C, Azizli KA, Ahmad ZA, Sakai E
    Waste Manag, 2009 May;29(5):1675-9.
    PMID: 19131236 DOI: 10.1016/j.wasman.2008.11.014
    The present study is focused on clarifying the influence of waste gypsum (WG) in replacing natural gypsum (NG) in the production of ordinary Portland cement (OPC). WG taken from slip casting moulds in a ceramic factory was formed from the hydration of plaster of paris. Clinker and 3-5wt% of WG was ground in a laboratory ball mill to produce cement waste gypsum (CMWG). The same procedure was repeated with NG to substitute WG to prepare cement natural gypsum (CMNG). The properties of NG and WG were investigated via X-ray Diffraction (XRD), X-ray fluorescence (XRF) and differential scanning calorimetry (DSC)/thermogravimetric (TG) to evaluate the properties of CMNG and CMWG. The mechanical properties of cement were tested in terms of setting time, flexural and compressive strength. The XRD result of NG revealed the presence of dihydrate while WG contained dihydrate and hemihydrate. The content of dihydrate and hemihydrates were obtained via DSC/TG, and the results showed that WG and NG contained 12.45% and 1.61% of hemihydrate, respectively. Furthermore, CMWG was found to set faster than CMNG, an average of 15.29% and 13.67% faster for the initial and final setting times, respectively. This was due to the presence of hemihydrate in WG. However, the values obtained for flexural and compressive strength were relatively the same for CMNG and CMWG. Therefore, this result provides evidence that WG can be used as an alternative material to NG in the production of OPC.
    Matched MeSH terms: Calcium Sulfate/chemistry*
  16. Lee KT, Bhatia S, Mohamed AR, Chu KH
    Chemosphere, 2006 Jan;62(1):89-96.
    PMID: 15996711
    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.
    Matched MeSH terms: Calcium Sulfate/chemistry*
  17. Khalaf S, Ariffin Z, Husein A, Reza F
    J Prosthodont, 2017 Dec;26(8):664-669.
    PMID: 28177575 DOI: 10.1111/jopr.12460
    PURPOSE: To compare the adhesion of three microorganisms on modified and unmodified silicone elastomer surfaces with different surface roughnesses and porosities.

    MATERIALS AND METHODS: Candida albicans, Streptococcus mutans, and Staphylococcus aureus were incubated with modified and unmodified silicone groups (N = 35) for 30 days at 37°C. The counts of viable microorganisms in the accumulating biofilm layer were determined and converted to cfu/cm2 unit surface area. A scanning electron microscope (SEM) was used to evaluate the microbial adhesion. Statistical analysis was performed using t-test, one-way ANOVA, and post hoc tests as indicated.

    RESULTS: Significant differences in microbial adhesion were observed between modified and unmodified silicone elastomers after the cells were incubated for 30 days (p < 0.001). SEM showed evident differences in microbial adhesion on modified silicone elastomer compared with unmodified silicone elastomer.

    CONCLUSIONS: Surface modification of silicone elastomer yielding a smoother and less porous surface showed lower adhesion of different microorganisms than observed on unmodified surfaces.

    Matched MeSH terms: Calcium Sulfate*
  18. Siti Suhara Ramli, Aini `Izzati Mohd Rosdi
    ESTEEM Academic Journal, 2019;15(1):64-75.
    MyJurnal
    Fried banana is one of the popular local snacks in Malaysia. However, tremendous interest in healthy food has risen among consumers and producers resulting in a rising demand for low-fat foods. Thus, oil uptake needs to be considered during frying since it also affects the flavour, odour
    and general organoleptic properties of the food. The main objective of this study is to determine the effect of different concentrations of sugar beet pectin in the frying batter of fried banana and introduce the new usage of sugar beet pectin as one of the ingredients in the frying batter. Three different formulations of frying batter were prepared using 1%, 1.5% and 2% of sugar beet pectin (SBP) together with other ingredients including rice flour, water, plain flour, baking powder and salt. The addition of sugar beet pectin improved the characteristic of the batter as well as the fried banana crust. The moisture content of the crust increased about 7.6% when 1.5% SBP (F2) was used in the formulation thereby reducing the oil absorption by 8.5%. The crust crispiness also increased by 16.7% when 1.5% SBP (F2) was added to the frying batter formulation. Batter pick-up value was found highest in F1 (1% SBP) with 8.84% increment as compared to batter with no added hydrocolloids. Addition of SBP in batter formulations significantly increased the batter pick-up value. In terms of acceptability, F1 (1% SBP) was the most preferred by the panellist which was due to the appearance and colour of the fried bananas. All formulations obtained attributes scores higher than six thus were accepted by the panellists.
    Matched MeSH terms: Calcium Sulfate
  19. Zamzuri Z., Ariff M.S., Mohd Fairuz Ad., Mohd Shukrimi A., Nazri My.
    MyJurnal
    Introduction: Burst fracture results from compression failure of both the anterior and middle columns under
    substantial axial loads. Conservative treatment was a method of treatment for fractures without
    neurological deficit. This cross sectional study was designed to evaluate the functional and radiological
    outcome of patient with thoracolumbar burst fracture treated conservatively. Methods: 40 cases were
    recruited from January 2013 till December 2015. They were followed-up with minimum period of 1 year and
    evaluated for the functional (Oswetry Disbility Index) and radiological outcomes (kyphotic angle deformity
    and anterior body compression). Results: 20 patients were treated with body cast made form plaster of
    Paris and remaining 20 patients with fiberglass cast. In plaster of Paris group, mean kyphotic angle
    deformity at last follow up was 16.60 ± 2.95 with a mean improvement 4.45 degree and anterior body
    compression at last follow up was 30.35% ± 10.2 with mean improvement of 9.30%. In fiberglass group, mean
    kyphotic angle deformity at last follow up was 15.55 ± 3.38 with a mean improvement 7.25 degree and
    anterior body compression at last follow up was 25.90% ± 7.81 with mean improvement of 3.45%. The
    functional outcome showed Oswetry Disability Index (ODI) score in plaster of Paris group was 23.70 (SD =
    7.82) and in fiberglass group was 18.50 (SD = 5.94). Conclusions: Application of body cast using a fiberglass
    material give better radiological outcome hence less pain, more functional and higher patient’s satisfaction
    as compared to plaster of Paris.
    Matched MeSH terms: Calcium Sulfate
  20. Sultan T, Cheah CW, Ibrahim NB, Asif MK, Vaithilingam RD
    J Dent, 2020 Oct;101:103455.
    PMID: 32828845 DOI: 10.1016/j.jdent.2020.103455
    OBJECTIVES: This clinical study assessed and compared the linear and volumetric changes of extraction sockets grafted with a combination of Platelet-Rich Fibrin (PRF) and Calcium Sulfate (CS) (PRF-CS), and extraction sockets grafted with a combination of PRF and xenograft (X) (PRF-X).

    METHODS: Five single maxillary premolar extraction sockets received PRF-CS grafts and five single maxillary premolar sockets received PRF-X grafts. Linear (horizontal and vertical) measurements were accomplished using Cone Beam Computed Tomography (CBCT) images and volumetric changes were assessed using MIMICS software. Soft tissue level changes were measured using Stonecast models. All measurements were recorded at baseline (before extraction) and at 5-months post-extraction.

    RESULTS: Significant reduction in vertical and horizontal dimensions were observed in both groups except for distal bone height (DBH = 0.44 ± 0.45 mm, p = 0.09) and palatal bone height (PBH = 0.39 ± 0.34 mm, p = 0.06) in PRF-X group. PRF-CS group demonstrated mean horizontal shrinkage of 1.27 ± 0.82 mm (p = 0.02), when compared with PRF-X group (1.40 ± 0.85 mm, p = 0.02). Vertical resorption for mesial bone height (MBH = 0.56 ± 0.25 mm, p = 0.008), buccal bone height (BBH = 1.62 ± 0.91 mm, p = 0.01) and palatal bone height (PBH = 1.39 ± 0.87 mm, p = 0.02) in PRF-CS group was more than resorption in PRF-X group (MBH = 0.28 ± 0.14 mm, p = 0.01, BBH = 0.63 ± 0.39 mm, p = 0.02 and PBH = 0.39 ± 0.34 mm, p = 0.06). Volumetric bone resorption was significant within both groups (PRF-CS = 168.33 ± 63.68 mm3, p = 0.004; PRF-X = 102.88 ± 32.93 mm3, p = 0.002), though not significant (p = 0.08) when compared between groups. In PRF-X group, the distal soft tissue level (DSH = 1.00 ± 0.50 mm, p = 0.03) demonstrated almost 2 times more reduction when compared with PRF-CS group (DSH = 1.00 ± 1.00 mm, 0.08). The reduction of the buccal soft tissue level was pronounced in PRF-CS group (BSH = 2.00 ± 2.00 mm, p = 0.06) when compared with PRF-X group (BSH = 1.00 ± 1.50 mm, p = 0.05).

    CONCLUSIONS: PRF-CS grafted sites showed no significant difference with PRF-X grafted sites in linear and volumetric dimensional changes and might show clinical benefits for socket augmentation. The study is officially registered with ClinicalTrials.gov Registration (NCT03851289).

    Matched MeSH terms: Calcium Sulfate
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links