Displaying all 3 publications

Abstract:
Sort:
  1. Hillman F, Hamid MRA, Krokidas P, Moncho S, Brothers EN, Economou IG, et al.
    Angew Chem Int Ed Engl, 2021 Apr 26;60(18):10103-10111.
    PMID: 33620755 DOI: 10.1002/anie.202015635
    We present a novel synthesis strategy termed delayed linker addition (DLA) to synthesize hybrid zeolitic-imidazolate frameworks containing unsubstituted imidazolate linkers (Im) with SOD topology (hereafter termed Im/ZIF-8). Im linker incorporation can create larger voids and apertures, which are important properties for gas storage and separation. To date, there have been only a handful of reports of Im linkers incorporated into ZIF-8 frameworks, typically requiring arduous and complicated post synthesis approaches. DLA, as reported here, is a simple one-step synthesis strategy allowing high incorporation of Im linker into the ZIF-8 framework while still retaining its SOD topology. We fabricated mixed-matrix membranes (MMMs) with 6FDA-DAM polymer and Im/ZIF-8 obtained via DLA as a filler. The Im/ZIF-8-containing MMMs showed excellent performance for both propylene/propane and n-butane/i-butane separation, displaying permeability and ideal selectivity well above the polymer upper bound. Moreover, highly detailed molecular simulations shed light to the aperture size and flexibility response of Im/ZIF-8 and its improved diffusivity as compared to ZIF-8.
    Matched MeSH terms: Butanes
  2. Shamsuri AA, Daik R
    Materials (Basel), 2013 Feb 22;6(2):682-698.
    PMID: 28809334 DOI: 10.3390/ma6020682
    An ionic liquid, 1-n-butyl-3-methylimidazolium chloride (BmimCl) was blended with urea at 1:1 mole ratio to create a BmimCl/Urea mixture. The agarose/talc composite films containing the BmimCl/Urea mixture were then acquired through a gelation method. The weight ratio of agarose and talc was fixed at 4:1, while the content of BmimCl/Urea was varied from 0 to 10 wt % relative to the overall weight of the composite films. The tensile stress and modulus results showed the optimum BmimCl/Urea content in the composite film lies at 8 wt %. The talc particles are embedded in the agarose matrix and there are no pullouts for the composite films containing BmimCl/Urea as demonstrated by SEM micrographs. The addition of BmimCl/Urea increased the glass transition temperature of the composite films, however, the thermal decomposition temperature decreased drastically. FTIR and FT-Raman spectra indicated the existence of interaction between agarose and talc, which improves their interfacial adhesion. As a conclusion, a BmimCl/Urea mixture can be utilized as a coupling agent for agarose/talc composite films.
    Matched MeSH terms: Butanes
  3. Abadi MH, Hamidon MN, Shaari AH, Abdullah N, Misron N, Wagiran R
    Sensors (Basel), 2010;10(5):5074-89.
    PMID: 22399925 DOI: 10.3390/s100505074
    Microstructural, topology, inner morphology, and gas-sensitivity of mixed xWO(3)(1-x)Y(2)O(3) nanoparticles (x = 1, 0.95, 0.9, 0.85, 0.8) thick-film semiconductor gas sensors were studied. The surface topography and inner morphological properties of the mixed powder and sensing film were characterized with X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Also, gas sensitivity properties of the printed films were evaluated in the presence of methane (CH(4)) and butane (C(4)H(10)) at up to 500 °C operating temperature of the sensor. The results show that the doping agent can modify some structural properties and gas sensitivity of the mixed powder.
    Matched MeSH terms: Butanes
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links