Presbytis cristata monkeys infected through the inoculation of between 200 and 400 subperiodic Brugia malayi infective larvae (L3) in the right thigh, in both thighs or in the dorsum of the right foot were followed up for varying periods of up to about 8 months after infection. All 148 inoculated animals became patent, with mean prepatent periods being between 66 and 76 days. In animals injected in the thigh, the patterns of microfilaraemia were similar, there being a rapid rise in the geometric mean counts (GMCs) of microfilariae during the first 10-12 weeks of patency, which then plateaued at levels of greater than 1000/ml. Adult worm recovery, expressed as the percentage of the infective dose, was significantly higher in animals injected with 100 L3 in each thigh, being 9.4% as compared with 2.8%-4.8% in other groups. It is therefore recommended that animals should be injected with 100 L3 in each thigh and that the testing of potential filaricides in this model be carried out during the phase of rapid increase in microfilaraemia to ensure that any microfilaricidal effect can easily be detected.
Two out of six monoclonals (McAbs) produced against subperiodic Brugia malayi infective larva (L3) antigens impaired B. malayi L3 motility independently of human buffy coat cells. Scanning electron microscopy studies showed damage to L3 surface and loss of regular cuticular annulations. The two McAbs (BML 1a and BM1 8b) did not affect B. malayi microfilaria (mf). They were IFAT-positive with B. malayi adult and L3 antigens; other McAbs which did not affect mf or L3 motility were IFAT-negative. All six McAbs did not promote cellular adherence of normal human buffy coat cells to mf or L3.
Studies on larval population densities and adult emergence rates of the Brugian filariasis vectors Mansonia bonneae Edwards and Ma. dives Schiner were conducted in freshwater swamp forest bordering the Sadong River, Serian District, Sarawak, East Malaysia, during 1984-85. Three species of aquatic host-plants in the Family Araceae were identified as supporting immature stages of the Ma. bonneae/dives complex. Proportions of positive plants were 4.7%, 6.5% and 3.4% with 6.4 +/- 2.6, 7.3 +/- 2.8 and 10.1 +/- 1.1 larvae per positive plant, respectively, for the plant species Homalomena cordata Schott, H. rostrata Griffiths and Hydrostemma motleyi (Hook. f.) Mabberley. These data indicate no significant preferences between the three types of host-plant. Detailed monitoring of the host-plant H. cordata revealed no significant monthly fluctuations in larval density per plant nor the proportion of positive plants. 11.6% of larvae were Ma. dives and 88.4% were Ma. bonneae. Mean daily yields of Ma. bonneae/dives adults per square metre of H. cordata vegetated water surface were 0.45 males plus 0.57 females during the wet season (December-February) compared with 0.2 males plus 0.31 females during the dry season (June-August). Thus output of adults per plant was approximately halved, and suitable breeding areas were further reduced, during the dry season. By extrapolation from these rates, a crude mean estimate for productivity of Ma. bonneae/dives females is 1.6 million per hectare per annum in swamp forest habitats vegetated with any of the host-plants studied.
Hematological changes were monitored in the leaf-monkey, Presbytis cristata, infected experimentally with 200 subperiodic Brugia malayi infective larvae. Prepatent periods were 54-86 days and peak microfilarial geometric mean counts (GMCs) were 1324 per ml blood. Total leukocyte and differential counts were measured at pre-infection, and then at weakly intervals before and during patency. Blood eosinophil level increased to about thrice the initial level at 3 weeks post-infection and this was maintained for the next 13 weeks before it started to rise again, increasing to more than 5 times the initial level at 20 weeks post-infection. The observed pattern of eosinophilia is probably related to the level of microfilaremia and the destruction of microfilariae in the spleen. There was no significant change in the total leukocyte counts during the period of observation.
Five aqueous extracts from three plant species, i.e., dried husks (HX), dried seeds (SX) and dried leaves (LX) of Xylocarpus granatum (Meliaceae), dried stems (ST) of Tinospora crispa (Menispermaceae) and dried leaves (LA) of Andrographis paniculata (Acanthaceae) were tested in vitro against adult worms of subperiodic Brugia malayi. The relative movability (RM) value of the adult worms over the 24-h observation period was used as a measure of the antifilarial activity of the aqueous extracts. SX extract of X. granatum demonstrated the strongest activity, followed by the LA extract of A. paniculata, ST extract of T. crispa, HX extract and LX extract of X. granatum.