Displaying all 2 publications

Abstract:
Sort:
  1. Abdul Rahman RA, Hanapiah FA, Nikmat AW, Ismail NA, Manaf H
    Neurosciences (Riyadh), 2019 01;24(1):29-35.
    PMID: 30842397 DOI: 10.17712/nsj.2019.1.20180195
    OBJECTIVE: To investigate the effects of concurrent tasks (motor and cognitive) on postural control performance in children with traumatic brain injury (TBI) compared to typically developing (TD) control subjects.

    METHODS: Sixteen children with TBI (aged 11.63+/-1.89 years) and 22 TD controls (aged 11.41+/-2.24 years) participated in this case-control study. This study was conducted between May 2016 and March 2017. Each child performed static standing under 3 different conditions: single, concurrent motor, and concurrent cognitive task. Postural control performance measure includes sway area, anterior-posterior (AP) sway velocity, medio-lateral (ML) sway velocity, AP sway distance and ML sway distance as measured using the APDM Mobility Lab (Oregon, Portland). A repeated-measure analysis of variance was used to analyse the data.

    RESULTS: We found that children with TBI showed significantly more deterioration in postural control performance than TD children (p<0.05). Both concurrent tasks (motor and cognitive) significantly decreased postural control performance in both groups with more pronounced changes in children with TBI than that of the TD controls.

    CONCLUSION: The results demonstrated that, performing concurrent tasks (motor and cognitive) during upright standing resulted in deterioration of postural control performance. The existence of cognitive and balance impairment in children with TBI will possibly cause concurrent tasks to be more complex and demands greater attention compared to single task.

    Matched MeSH terms: Brain Injuries, Traumatic/physiopathology*
  2. Zulazmi NA, Arulsamy A, Ali I, Zainal Abidin SA, Othman I, Shaikh MF
    CNS Neurosci Ther, 2021 Apr;27(4):381-402.
    PMID: 33539662 DOI: 10.1111/cns.13590
    Traumatic brain injury (TBI) is the leading cause of death and disability worldwide and has complicated underlying pathophysiology. Numerous TBI animal models have been developed over the past decade to effectively mimic the human TBI pathophysiology. These models are of mostly mammalian origin including rodents and non-human primates. However, the mammalian models demanded higher costs and have lower throughput often limiting the progress in TBI research. Thus, this systematic review aims to discuss the potential benefits of non-mammalian TBI models in terms of their face validity in resembling human TBI. Three databases were searched as follows: PubMed, Scopus, and Embase, for original articles relating to non-mammalian TBI models, published between January 2010 and December 2019. A total of 29 articles were selected based on PRISMA model for critical appraisal. Zebrafish, both larvae and adult, was found to be the most utilized non-mammalian TBI model in the current literature, followed by the fruit fly and roundworm. In conclusion, non-mammalian TBI models have advantages over mammalian models especially for rapid, cost-effective, and reproducible screening of effective treatment strategies and provide an opportunity to expedite the advancement of TBI research.
    Matched MeSH terms: Brain Injuries, Traumatic/physiopathology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links