Displaying all 8 publications

Abstract:
Sort:
  1. Hattori R, Matsubara H
    Mol Cell Biochem, 2004 Sep;264(1-2):151-5.
    PMID: 15544044
    Conventional therapies for severe ischemic heart disease are limited in applicability. While several angiogenesis researches have shown novel efficacy, safety and feasibility for clinical use, recently we have started the clinical trial of a sole cell therapy using autologous bone marrow mononuclear cells transplantation targeted into ischemic hibernating myocardium. Here, we review the background of bone marrow cell research and introduce therapeutic angiogenesis for severe ischemic heart disease by autologous bone marrow cells transplantation.
    Matched MeSH terms: Bone Marrow Transplantation/methods*
  2. Ariffin H, Chew KS, Jawin V, Thavagnanam S
    Singapore Med J, 2020 May;61(5):284-285.
    PMID: 30128577 DOI: 10.11622/smedj.2018101
    Matched MeSH terms: Bone Marrow Transplantation/methods*
  3. Goh JC, Shao XX, Hutmacher D, Lee EH
    Med J Malaysia, 2004 May;59 Suppl B:17-8.
    PMID: 15468797
    Matched MeSH terms: Bone Marrow Transplantation/methods*
  4. Yusoff FM, Kajikawa M, Takaeko Y, Kishimoto S, Hashimoto H, Maruhashi T, et al.
    Sci Rep, 2020 11 16;10(1):19891.
    PMID: 33199760 DOI: 10.1038/s41598-020-76886-6
    Cell therapy using intramuscular injections of autologous bone-marrow mononuclear cells (BM-MNCs) improves clinical symptoms and can prevent limb amputation in atherosclerotic peripheral arterial disease (PAD) patients with critical limb ischemia (CLI). The purpose of this study was to evaluate the effects of the number of implanted BM-MNCs on clinical outcomes in atherosclerotic PAD patients with CLI who underwent cell therapy. This study was a retrospective observational study with median follow-up period of 13.5 years (range, 6.8-15.5 years) from BM-MNC implantation procedure. The mean number of implanted cells was 1.2 ± 0.7 × 109 per limb. There was no significant difference in number of BM-MNCs implanted between the no major amputation group and major amputation group (1.1 ± 0.7 × 109 vs. 1.5 ± 0.8 × 109 per limb, P = 0.138). There was also no significant difference in number of BM-MNCs implanted between the no death group and death group (1.5 ± 0.9 × 109 vs. 1.8 ± 0.8 × 109 per patient, P = 0.404). Differences in the number of BM-MNCs (mean number, 1.2 ± 0.7 × 109 per limb) for cell therapy did not alter the major amputation-free survival rate or mortality rate in atherosclerotic PAD patients with CLI. A large number of BM-MNCs will not improve limb salvage outcome or mortality.
    Matched MeSH terms: Bone Marrow Transplantation/methods*
  5. Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH
    Exp Gerontol, 2012 Jun;47(6):458-64.
    PMID: 22759409 DOI: 10.1016/j.exger.2012.03.018
    In recent years, the use of bone marrow mesenchymal stem cell (BMSC) implantation has provided an alternative treatment for osteoarthritis. The objective of this study is to determine whether or not an intra-articular injection of a single dose of autologous chondrogenic induced BMSC could retard the progressive destruction of cartilage in a surgically induced osteoarthritis in sheep. Sheep BMSCs were isolated and divided into two groups. One group was cultured in chondrogenic media containing (Ham's F12:DMEM, 1:1) FD+1% FBS+5 ng/ml TGFβ3+50 ng/ml IGF-1 (CM), and the other group was cultured in the basal media, FD+10% FBS (BM). The procedure for surgically induced osteoarthritis was performed on the donor sheep 6 weeks prior to intra-articular injection into the knee joint of a single dose of BMSC from either group, suspended in 5 ml FD at density of 2 million cells/ml. The control groups were injected with basal media, without cells. Six weeks after injection, gross evidence of retardation of cartilage destruction was seen in the osteoarthritic knee joints treated with CM as well as BM. No significant ICRS (International Cartilage Repair Society) scoring was detected between the two groups with cells. However macroscopically, meniscus repair was observed in the knee joint treated with CM. Severe osteoarthritis and meniscal injury was observed in the control group. Interestingly, histologically the CM group demonstrated good cartilage histoarchitecture, thickness and quality, comparable to normal knee joint cartilage. As a conclusion, intra-articular injection of a single dose of BMSC either chondrogenically induced or not, could retard the progression of osteoarthritis (OA) in a sheep model, but the induced cells indicated better results especially in meniscus regeneration.
    Study site: Universiti Kebangsaan Malaysia, Kuala Lumpur
    Matched MeSH terms: Bone Marrow Transplantation/methods
  6. Saw KY, Hussin P, Loke SC, Azam M, Chen HC, Tay YG, et al.
    Arthroscopy, 2009 Dec;25(12):1391-400.
    PMID: 19962065 DOI: 10.1016/j.arthro.2009.07.011
    PURPOSE: The purpose of the study was to determine whether postoperative intra-articular injections of autologous marrow aspirate (MA) and hyaluronic acid (HA) after subchondral drilling resulted in better cartilage repair as assessed histologically by Gill scoring.
    METHODS: In a goat model we created a 4-mm full-thickness articular cartilage defect in the stifle joint (equivalent to 1.6 cm in the human knee) and conducted subchondral drilling. The animals were divided into 3 groups: group A (control), no injections; group B (HA), weekly injection of 1 mL of sodium hyaluronate for 3 weeks; and group C (HA + MA), similar to group B but with 2 mL of autologous MA in addition to HA. MA was obtained by bone marrow aspiration, centrifuged, and divided into aliquots for cryopreservation. Fifteen animals were equally divided between the groups and sacrificed 24 weeks after surgery, when the joint was harvested, examined macroscopically and histologically.
    RESULTS: Of the 15 animals, 2 from group A had died of non-surgery-related complications and 1 from group C was excluded because of a joint infection. In group A the repair constituted mainly scar tissue, whereas in group B there was less scar tissue, with small amounts of proteoglycan and type II collagen at the osteochondral junction. In contrast, repair cartilage from group C animals showed almost complete coverage of the defect with evidence of hyaline cartilage regeneration. Histology assessed by Gill scoring was significantly better in group C with 1-way analysis of variance yielding an F statistic of 10.611 with a P value of .004, which was highly significant.
    CONCLUSIONS: Postoperative intra-articular injections of autologous MA in combination with HA after subchondral drilling resulted in better cartilage repair as assessed histologically by Gill scoring in a goat model.
    CLINICAL RELEVANCE: After arthroscopic subchondral drilling, this novel technique may result in better articular cartilage regeneration.
    Matched MeSH terms: Bone Marrow Transplantation/methods*
  7. Das AK, Bin Abdullah BJ, Dhillon SS, Vijanari A, Anoop CH, Gupta PK
    World J Surg, 2013 Apr;37(4):915-22.
    PMID: 23307180 DOI: 10.1007/s00268-012-1892-6
    BACKGROUND: Critical limb ischemia (CLI) caused by peripheral arterial disease is associated with significant morbidity and mortality. This condition is associated with a 30 % amputation rate as well as mortality levels which might be as high as 25 %. There is no pharmacological therapy available, but several reports have suggested that mesenchymal stem cells (MSCs) may be a useful therapeutic option.
    METHODS: This study, done at a university hospital, evaluated 13 patients for a phase I trial to investigate the safety and efficacy of intra-arterial MSCs in CLI patients. Eight patients with ten affected limbs were recruited for the study. As two patients (three limbs) died of ischemic cardiac events during the 6-month follow-up period, seven limbs were finally evaluated for the study.
    RESULTS: There was significant pain relief. Visual analog scale (VAS) scores decreased from 2.29 ± 0.29 to 0.5 ± 0.34 (p < 0.05), ankle brachial pressure index (ABPI) increased significantly from 0.56 ± 0.02 to 0.67 ± 0.021 (p < 0.01), and transcutaneous oxygen pressure (TcPO2) also increased significantly in the foot from 13.57 ± 3.63 to 38 ± 3.47. Similar improvement was seen in the leg as well as the thigh. There was 86 % limb salvage and six of seven ulcers showed complete or partial healing.
    CONCLUSION: It was concluded that intra-arterial MSCs could be safely administered to patients with CLI and was associated with significant therapeutic benefits.
    Matched MeSH terms: Bone Marrow Transplantation/methods*
  8. Abdul Wahid SF, Ismail NA, Wan Jamaludin WF, Muhamad NA, Abdul Hamid MKA, Harunarashid H, et al.
    Cochrane Database Syst Rev, 2018 Aug 29;8(8):CD010747.
    PMID: 30155883 DOI: 10.1002/14651858.CD010747.pub2
    BACKGROUND: Revascularisation is the gold standard therapy for patients with critical limb ischaemia (CLI). In over 30% of patients who are not suitable for or have failed previous revascularisation therapy (the 'no-option' CLI patients), limb amputation is eventually unavoidable. Preliminary studies have reported encouraging outcomes with autologous cell-based therapy for the treatment of CLI in these 'no-option' patients. However, studies comparing the angiogenic potency and clinical effects of autologous cells derived from different sources have yielded limited data. Data regarding cell doses and routes of administration are also limited.

    OBJECTIVES: To compare the efficacy and safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients.

    SEARCH METHODS: The Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and trials registries (16 May 2018). Review authors searched PubMed until February 2017.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving 'no-option' CLI patients comparing a particular source or regimen of autologous cell-based therapy against another source or regimen of autologous cell-based therapy.

    DATA COLLECTION AND ANALYSIS: Three review authors independently assessed the eligibility and methodological quality of the trials. We extracted outcome data from each trial and pooled them for meta-analysis. We calculated effect estimates using a risk ratio (RR) with 95% confidence interval (CI), or a mean difference (MD) with 95% CI.

    MAIN RESULTS: We included seven RCTs with a total of 359 participants. These studies compared bone marrow-mononuclear cells (BM-MNCs) versus mobilised peripheral blood stem cells (mPBSCs), BM-MNCs versus bone marrow-mesenchymal stem cells (BM-MSCs), high cell dose versus low cell dose, and intramuscular (IM) versus intra-arterial (IA) routes of cell implantation. We identified no other comparisons in these studies. We considered most studies to be at low risk of bias in random sequence generation, incomplete outcome data, and selective outcome reporting; at high risk of bias in blinding of patients and personnel; and at unclear risk of bias in allocation concealment and blinding of outcome assessors. The quality of evidence was most often low to very low, with risk of bias, imprecision, and indirectness of outcomes the major downgrading factors.Three RCTs (100 participants) reported a total of nine deaths during the study follow-up period. These studies did not report deaths according to treatment group.Results show no clear difference in amputation rates between IM and IA routes (RR 0.80, 95% CI 0.54 to 1.18; three RCTs, 95 participants; low-quality evidence). Single-study data show no clear difference in amputation rates between BM-MNC- and mPBSC-treated groups (RR 1.54, 95% CI 0.45 to 5.24; 150 participants; low-quality evidence) and between high and low cell dose (RR 3.21, 95% CI 0.87 to 11.90; 16 participants; very low-quality evidence). The study comparing BM-MNCs versus BM-MSCs reported no amputations.Single-study data with low-quality evidence show similar numbers of participants with healing ulcers between BM-MNCs and mPBSCs (RR 0.89, 95% CI 0.44 to 1.83; 49 participants) and between IM and IA routes (RR 1.13, 95% CI 0.73 to 1.76; 41 participants). In contrast, more participants appeared to have healing ulcers in the BM-MSC group than in the BM-MNC group (RR 2.00, 95% CI 1.02 to 3.92; one RCT, 22 participants; moderate-quality evidence). Researchers comparing high versus low cell doses did not report ulcer healing.Single-study data show similar numbers of participants with reduction in rest pain between BM-MNCs and mPBSCs (RR 0.99, 95% CI 0.93 to 1.06; 104 participants; moderate-quality evidence) and between IM and IA routes (RR 1.22, 95% CI 0.91 to 1.64; 32 participants; low-quality evidence). One study reported no clear difference in rest pain scores between BM-MNC and BM-MSC (MD 0.00, 95% CI -0.61 to 0.61; 37 participants; moderate-quality evidence). Trials comparing high versus low cell doses did not report rest pain.Single-study data show no clear difference in the number of participants with increased ankle-brachial index (ABI; increase of > 0.1 from pretreatment), between BM-MNCs and mPBSCs (RR 1.00, 95% CI 0.71 to 1.40; 104 participants; moderate-quality evidence), and between IM and IA routes (RR 0.93, 95% CI 0.43 to 2.00; 35 participants; very low-quality evidence). In contrast, ABI scores appeared higher in BM-MSC versus BM-MNC groups (MD 0.05, 95% CI 0.01 to 0.09; one RCT, 37 participants; low-quality evidence). ABI was not reported in the high versus low cell dose comparison.Similar numbers of participants had improved transcutaneous oxygen tension (TcO₂) with IM versus IA routes (RR 1.22, 95% CI 0.86 to 1.72; two RCTs, 62 participants; very low-quality evidence). Single-study data with low-quality evidence show a higher TcO₂ reading in BM-MSC versus BM-MNC groups (MD 8.00, 95% CI 3.46 to 12.54; 37 participants) and in mPBSC- versus BM-MNC-treated groups (MD 1.70, 95% CI 0.41 to 2.99; 150 participants). TcO₂ was not reported in the high versus low cell dose comparison.Study authors reported no significant short-term adverse effects attributed to autologous cell implantation.

    AUTHORS' CONCLUSIONS: Mostly low- and very low-quality evidence suggests no clear differences between different stem cell sources and different treatment regimens of autologous cell implantation for outcomes such as all-cause mortality, amputation rate, ulcer healing, and rest pain for 'no-option' CLI patients. Pooled analyses did not show a clear difference in clinical outcomes whether cells were administered via IM or IA routes. High-quality evidence is lacking; therefore the efficacy and long-term safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients, remain to be confirmed.Future RCTs with larger numbers of participants are needed to determine the efficacy of cell-based therapy for CLI patients, along with the optimal cell source, phenotype, dose, and route of implantation. Longer follow-up is needed to confirm the durability of angiogenic potential and the long-term safety of cell-based therapy.

    Matched MeSH terms: Bone Marrow Transplantation/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links