Displaying all 7 publications

Abstract:
Sort:
  1. Tan LP, Choong SS, Samsuddin AS, Lee SH
    Ticks Tick Borne Dis, 2019 10;10(6):101285.
    PMID: 31494069 DOI: 10.1016/j.ttbdis.2019.101285
    Two ticks were collected from a reticulated python (Malayopython reticulatus) caught in Tumpat District, Kelantan, Peninsular Malaysia. The ticks were first identified as Ambylomma sp. through morphological comparison with identification keys. Determination of the tick species was made through PCR and sequencing. However, BLAST analysis revealed 85-88% sequence nucleotide identity with Amblyomma nitidum and Amblyomma geoemydae. Additionally, the morphological features of the ticks collected in this study did not match either A. nitidum or A. geoemydae. Further examination of the ticks confirmed the species as Amblyomma cordiferum. This is the first record of A. cordiferum DNA sequence with morphological support of colour illustrations for adult A. cordiferum. This is also the most recent record of this host association in Peninsular Malaysia. Information from this report can serve as a reference for species identification using the described morphology or molecular sequences.
    Matched MeSH terms: Boidae*
  2. Aburas MM, Ahamad MSS, Omar NQ
    Environ Monit Assess, 2019 Mar 05;191(4):205.
    PMID: 30834982 DOI: 10.1007/s10661-019-7330-6
    Spatio-temporal land-use change modeling, simulation, and prediction have become one of the critical issues in the last three decades due to uncertainty, structure, flexibility, accuracy, the ability for improvement, and the capability for integration of available models. Therefore, many types of models such as dynamic, statistical, and machine learning (ML) models have been used in the geographic information system (GIS) environment to fulfill the high-performance requirements of land-use modeling. This paper provides a literature review on models for modeling, simulating, and predicting land-use change to determine the best approach that can realistically simulate land-use changes. Therefore, the general characteristics of conventional and ML models for land-use change are described, and the different techniques used in the design of these models are classified. The strengths and weaknesses of the various dynamic, statistical, and ML models are determined according to the analysis and discussion of the characteristics of these models. The results of the review confirm that ML models are the most powerful models for simulating land-use change because they can include all driving forces of land-use change in the simulation process and simulate linear and non-linear phenomena, which dynamic models and statistical models are unable to do. However, ML models also have limitations. For instance, some ML models are complex, the simulation rules cannot be changed, and it is difficult to understand how ML models work in a system. However, this can be solved via the use of programming languages such as Python, which in turn improve the simulation capabilities of the ML models.
    Matched MeSH terms: Boidae
  3. Mariana A, Vellayan S, Halimaton I, Ho TM
    Asian Pac J Trop Med, 2011 Mar;4(3):227-8.
    PMID: 21771459 DOI: 10.1016/S1995-7645(11)60075-8
    OBJECTIVE: To identify the acari present on pet Burmese pythons in Malaysia and to determine whether there is any potential public health risk related to handling of the snakes.

    METHODS: Two sub-adult Burmese pythons kept as pets for a period of about 6 to 7 months by different owners, were brought to an exotic animal practice for treatment. On a complete medical examination, some ticks and mites (acari) were detected beneath the dorsal and ventral scales along body length of the snakes. Ticks were directly identified and mites were mounted prior to identification.

    RESULTS: A total of 12 ticks represented by 3 males, 2 females and 7 nymphal stages of Rhipicephalus sanguineus (R. sanguineus) were extracted from the first python while the other one was with 25 female Ophionyssus natricis (O. natricis) mesostigmatid mites. Only adult female mites were found. These mites are common ectoparasites of Burmese pythons.

    CONCLUSIONS: Both the acarine species found on the Burmese pythons are known vectors of pathogens. This is the first record that R. sanguineus has been reported from a pet Burmese python in Malaysia.

    Matched MeSH terms: Boidae/parasitology*
  4. Abba Y, Ilyasu YM, Noordin MM
    Microb Pathog, 2017 Jul;108:49-54.
    PMID: 28478198 DOI: 10.1016/j.micpath.2017.04.038
    AIM: Captivity of non-venomous snakes such as python and boa are common in zoos, aquariums and as pets in households. Poor captivity conditions expose these reptiles to numerous pathogens which may result in disease conditions. The purpose of this study was to investigate the common bacteria isolated from necropsied captive snakes in Malaysia over a five year period.

    MATERIALS AND METHODS: A total of 27 snake carcasses presented for necropsy at the Universiti Putra Malaysia (UPM) were used in this survey. Samples were aseptically obtained at necropsy from different organs/tissues (lung, liver, heart, kindey, oesophagus, lymph node, stomach, spinal cord, spleen, intestine) and cultured onto 5% blood and McConkey agar, respectively. Gram staining, morphological evaluation and biochemical test such as oxidase, catalase and coagulase were used to tentatively identify the presumptive bacterial isolates.

    RESULTS: Pythons had the highest number of cases (81.3%) followed by anaconda (14.8%) and boa (3.7%). Mixed infection accounted for 81.5% in all snakes and was highest in pythons (63%). However, single infection was only observed in pythons (18.5%). A total of 82.7%, 95.4% and 100% of the bacterial isolates from python, anaconda and boa, respectively were gram negative. Aeromonas spp was the most frequently isolated bacteria in pythons and anaconda with incidences of 25 (18%) and 8 (36.6%) with no difference (p > 0.05) in incidence, respectively, while Salmonella spp was the most frequently isolated in boa and significantly higher (p 

    Matched MeSH terms: Boidae/microbiology
  5. de Chambrier A, Brabec J, Tran BT, Scholz T
    Parasitol Res, 2019 Jun;118(6):1761-1783.
    PMID: 31065829 DOI: 10.1007/s00436-019-06326-6
    A morphological and molecular phylogenetic study of proteocephalid tapeworms of the genus Acanthotaenia von Linstow, 1903, parasites of monitors (Varanidae), was carried out. The type species, A. shipleyi von Linstow, 1903, which was originally described based on an immature specimen from Sri Lanka, is redescribed based on new material from the type host, Varanus salvator, in Sri Lanka, Malaysia, and Vietnam, and its neotype is designated. In addition, Acanthotaenia susanae n. sp. is described from Varanus nebulosus in Vietnam. The new species differs from congeners by the large size of the scolex, width of the rostellum and the number of testes. New molecular data (sequences of lsrDNA and cox1) revealed Acanthotaenia paraphyletic with the inclusion of Australotaenia bunthangi de Chambrier & Scholz, 2012, a parasite of Enhydris enhydris (Ophidia: Homalopsidae) in Cambodia. Molecular data confirm a wide distribution of A. shipleyi (isolates from Malaysia and Vietnam were almost identical) and indicate a strict host specificity (oioxeny) of individual species of the genus. Type specimens of four species made it possible to supplement their morphological descriptions. A survey of all species of Acanthotaenia recognised as valid is presented and the following taxonomic changes are proposed: Acanthotaenia pythonis Wahid, 1968 described from the green python, Morelia viridis, in a zoo, is transferred to Kapsulotaenia as Kapsulotaenia pythonis (Wahid, 1968) n. comb., because it possesses intrauterine eggs grouped in capsules. Acanthotaenia gracilis (Beddard, 1913) from Varanus varius in Australia is considered to be species inquirenda because its original descriptions did not contain sufficient data for adequate circumscription and differentiation from congeners and type material was not available. Generic diagnosis of Acanthotaenia is amended and a key to its seven species is provided.
    Matched MeSH terms: Boidae
  6. Jeyamogan S, Khan NA, Sagathevan K, Siddiqui R
    Anticancer Agents Med Chem, 2020;20(13):1558-1570.
    PMID: 32364082 DOI: 10.2174/1871520620666200504103056
    BACKGROUND: Cancer contributes to significant morbidity and mortality despite advances in treatment and supportive care. There is a need for the identification of effective anticancer agents. Reptiles such as tortoise, python, and water monitor lizards are exposed to heavy metals, tolerate high levels of radiation, feed on rotten/germ-infested feed, thrive in unsanitary habitat and yet have prolonged lifespans. Such species are rarely reported to develop cancer, suggesting the presence of anticancer molecules/mechanisms.

    METHODS: Here, we tested effects from sera of Asian water monitor lizard (Varanus salvator), python (Malayopython reticulatus) and tortoise (Cuora kamaroma amboinensis) against cancer cells. Sera were collected and cytotoxicity assays were performed using prostate cancer cells (PC3), Henrietta Lacks cervical adenocarcinoma cells (HeLa) and human breast adenocarcinoma cells (MCF7), as well as human keratinized skin cells (Hacat), by measuring lactate dehydrogenase release as an indicator for cell death. Growth inhibition assays were performed to determine the effects on cancer cell proliferation. Liquid chromatography mass spectrometry was performed for molecular identification.

    RESULTS: The findings revealed that reptilian sera, but not bovine serum, abolished viability of Hela, PC3 and MCF7 cells. Samples were subjected to liquid chromatography mass spectrometry, which detected 57 molecules from V. salvator, 81 molecules from Malayopython reticulatus and 33 molecules from C. kamaroma amboinensis and putatively identified 9 molecules from V. salvator, 20 molecules from Malayopython reticulatus and 9 molecules from C. kamaroma amboinensis when matched against METLIN database. Based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition, 123 potential Anticancer Peptides (ACPs) were identified from 883 peptides from V. salvator, 306 potential ACPs from 1074 peptides from Malayopython reticulatus and 235 potential ACPs from 885 peptides from C. kamaroma amboinensis.

    CONCLUSION: To our knowledge, for the first time, we reported comprehensive analyses of selected reptiles' sera using liquid chromatography mass spectrometry, leading to the identification of potentially novel anticancer agents. We hope that the discovery of molecules from these animals will pave the way for the rational development of new anticancer agents.

    Matched MeSH terms: Boidae/blood
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links