Displaying all 3 publications

Abstract:
Sort:
  1. Thakur S, Hosny KM, Alissa M, Bairwan RD, Yahya EB, Sabri M, et al.
    Int J Biol Macromol, 2024 Nov;281(Pt 3):136297.
    PMID: 39482132 DOI: 10.1016/j.ijbiomac.2024.136297
    Current alcohol-based sanitizers present safety concerns and are not suitable for all applications. To address the issue, biopolymer hydrogels offer a safer, sustainable alternative due to biocompatibility, biodegradability, and customizable properties. In present study, carboxymethyl cellulose (CMC) was prepared from Durian fruit rind, a tropical fruit byproduct rich in polysaccharides and combined with the synthetic polymer Carbopol to form a hydrogel with homogenization technique. Rambutan (Nephelium lappaceum) leaf extract (RLE) as an antibacterial agent was analyzed for functional, morphological, antibacterial, and structural properties. Phytochemical analysis of RLE confirmed the presence of antibacterial compounds, while Minimum Inhibitory Concentrations (MIC) were 33.3 μg/mL for Escherichia coli and 28.5 μg/mL for Staphylococcus aureus. Additionally, Scanning Electron Microscopy showed significant disruptions in bacterial cell walls. Hydrogel incorporated RLE was produced with improved properties confirmed through viscosity, FT-IR, Disc-diffusion assay and spread plate method analysis. In general, Rambutan leaf extract significantly improves the antibacterial properties of biopolymer-based hydrogels, hence offering a promising, eco-friendly alternative to alcohol-based sanitizers.
    Matched MeSH terms: Biopolymers/pharmacology
  2. Kumar M, Mahmood S, Chopra S, Bhatia A
    Int J Biol Macromol, 2024 May;267(Pt 2):131335.
    PMID: 38604431 DOI: 10.1016/j.ijbiomac.2024.131335
    Nanoparticles (NPs) have been extensively investigated for their potential in nanomedicine. There is a significant level of enthusiasm about the potential of NPs to bring out a transformative impact on modern healthcare. NPs can serve as effective wound dressings or delivery vehicles due to their antibacterial and pro-wound-healing properties. Biopolymer-based NPs can be manufactured using various food-grade biopolymers, such as proteins, polysaccharides, and synthetic polymers, each offering distinct properties suitable for different applications which include collagen, polycaprolactone, chitosan, alginate, and polylactic acid, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for applications in wound healing. Additionally, the nanofibers containing biopolymer-based NPs have shown excellent anti-bacterial and wound healing activity like silver NPs. These NPs represent a paradigm shift in wound healing therapies, offering targeted and personalized solutions for enhanced tissue regeneration and accelerated wound closure. The current review focuses on biopolymer NPs with their applications in wound healing.
    Matched MeSH terms: Biopolymers/pharmacology
  3. Lahiri D, Nag M, Dutta B, Dey A, Sarkar T, Pati S, et al.
    Int J Mol Sci, 2021 Nov 30;22(23).
    PMID: 34884787 DOI: 10.3390/ijms222312984
    Bacterial cellulose (BC) is recognized as a multifaceted, versatile biomaterial with abundant applications. Groups of microorganisms such as bacteria are accountable for BC synthesis through static or agitated fermentation processes in the presence of competent media. In comparison to static cultivation, agitated cultivation provides the maximum yield of the BC. A pure cellulose BC can positively interact with hydrophilic or hydrophobic biopolymers while being used in the biomedical domain. From the last two decades, the reinforcement of biopolymer-based biocomposites and its applicability with BC have increased in the research field. The harmony of hydrophobic biopolymers can be reduced due to the high moisture content of BC in comparison to hydrophilic biopolymers. Mechanical properties are the important parameters not only in producing green composite but also in dealing with tissue engineering, medical implants, and biofilm. The wide requisition of BC in medical as well as industrial fields has warranted the scaling up of the production of BC with added economy. This review provides a detailed overview of the production and properties of BC and several parameters affecting the production of BC and its biocomposites, elucidating their antimicrobial and antibiofilm efficacy with an insight to highlight their therapeutic potential.
    Matched MeSH terms: Biopolymers/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links