METHODS: In the global, open-label, phase 3 IMbrave050 study, adult patients with high-risk surgically resected or ablated hepatocellular carcinoma were recruited from 134 hospitals and medical centres in 26 countries in four WHO regions (European region, region of the Americas, South-East Asia region, and Western Pacific region). Patients were randomly assigned in a 1:1 ratio via an interactive voice-web response system using permuted blocks, using a block size of 4, to receive intravenous 1200 mg atezolizumab plus 15 mg/kg bevacizumab every 3 weeks for 17 cycles (12 months) or to active surveillance. The primary endpoint was recurrence-free survival by independent review facility assessment in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT04102098.
FINDINGS: The intention-to-treat population included 668 patients randomly assigned between Dec 31, 2019, and Nov 25, 2021, to either atezolizumab plus bevacizumab (n=334) or to active surveillance (n=334). At the prespecified interim analysis (Oct 21, 2022), median duration of follow-up was 17·4 months (IQR 13·9-22·1). Adjuvant atezolizumab plus bevacizumab was associated with significantly improved recurrence-free survival (median, not evaluable [NE]; [95% CI 22·1-NE]) compared with active surveillance (median, NE [21·4-NE]; hazard ratio, 0·72 [adjusted 95% CI 0·53-0·98]; p=0·012). Grade 3 or 4 adverse events occurred in 136 (41%) of 332 patients who received atezolizumab plus bevacizumab and 44 (13%) of 330 patients in the active surveillance group. Grade 5 adverse events occurred in six patients (2%, two of which were treatment related) in the atezolizumab plus bevacizumab group, and one patient (<1%) in the active surveillance group. Both atezolizumab and bevacizumab were discontinued because of adverse events in 29 patients (9%) who received atezolizumab plus bevacizumab.
INTERPRETATION: Among patients at high risk of hepatocellular carcinoma recurrence following curative-intent resection or ablation, recurrence-free survival was improved in those who received atezolizumab plus bevacizumab versus active surveillance. To our knowledge, IMbrave050 is the first phase 3 study of adjuvant treatment for hepatocellular carcinoma to report positive results. However, longer follow-up for both recurrence-free and overall survival is needed to assess the benefit-risk profile more fully.
FUNDING: F Hoffmann-La Roche/Genentech.
METHODS: This was a 24-month, phase 4, open-label, single-arm, prospective, observational study conducted at 20 specialised retinal centres in Japan. Participants were 209 patients with DME and impaired VA, not previously treated with either intravitreal or systemic anti-vascular endothelial growth factor (anti-VEGF) agents, who initiated ranibizumab 0.5 mg per investigator discretion. Following ranibizumab administration, patients were treated per routine clinical practice. Other treatments were allowed. The main outcome measure was the mean change in best-corrected VA (BCVA) in logarithmic minimum angle of resolution (logMAR) from baseline to month 12. An exploratory objective was to assess patients' psychological status using the Hospital Anxiety and Depression Scale (HADS).
RESULTS: The mean ± standard deviation BCVA at baseline was 0.43 ± 0.39 logMAR. The mean number of injections of ranibizumab and anti-VEGF agents from baseline to month 11 was 3.2 ± 2.0 and 3.6 ± 2.4, respectively. The BCVA change from baseline to 12 months was - 0.08 ± 0.34 logMAR (p = 0.011), showing a significant improvement; the HADS-anxiety score also decreased significantly (p = 0.001) and the depression score decreased numerically (p = 0.080).
CONCLUSION: MERCURY study data confirm the effectiveness of real-world treatment initiated with ranibizumab in Japanese patients with DME. In addition, treatment was able to positively influence anxiety via VA improvement.
METHODS: The study follows a systematic review approach that has been implemented to analyze the qualitative published data from previous studies. Studies related with the trials of angiogenesis and bevacizumab were selected in the review.
RESULTS: In general, the management of gynecological cancers include chemotherapy, surgery and radiation therapy. Results suggest bevacizumab as an effective treatment modality for cervical and several other cancers. Overall, bevacizumab showed promising results in improving the overall survival rate of gynecological cancer patients through the combination of bevacizumab with other chemotherapeutic agents.
CONCLUSION: Bevacizumab possess less documented adverse effects when compared to other chemotherapeutic agents. The manifestation and severity of adverse effects reported varied according to the chemotherapeutic agent(s) that were used with bevacizumab in combination therapy. Overall, bevacizumab effectively improved the survival rate in patients with several gynaecological cancers.