Displaying all 15 publications

Abstract:
Sort:
  1. Ismail N, Ismail M, Azmi NH, Abu Bakar MF, Basri H, Abdullah MA
    Oxid Med Cell Longev, 2016;2016:2528935.
    PMID: 26823946 DOI: 10.1155/2016/2528935
    Nigella sativa Linn. (N. sativa) and its bioactive constituent Thymoquinone (TQ) have demonstrated numerous pharmacological attributes. In the present study, the neuroprotective properties of Thymoquinone-rich fraction (TQRF) and TQ against hydrogen peroxide- (H2O2-) induced neurotoxicity in differentiated human SH-SY5Y cells were investigated. TQRF was extracted using supercritical fluid extraction while TQ was acquired commercially, and their effects on H2O2 were evaluated using cell viability assay, reactive oxygen species (ROS) assay, morphological observation, and multiplex gene expression. Both TQRF and TQ protected the cells against H2O2 by preserving the mitochondrial metabolic enzymes, reducing intracellular ROS levels, preserving morphological architecture, and modulating the expression of genes related to antioxidants (SOD1, SOD2, and catalase) and signaling genes (p53, AKT1, ERK1/2, p38 MAPK, JNK, and NF-κβ). In conclusion, the enhanced efficacy of TQRF over TQ was likely due to the synergism of multiple constituents in TQRF. The efficacy of TQRF was better than that of TQ alone when equal concentrations of TQ in TQRF were compared. In addition, TQRF also showed comparable effects to TQ when the same concentrations were tested. These findings provide further support for the use of TQRF as an alternative to combat oxidative stress insults in neurodegenerative diseases.
    Matched MeSH terms: Benzoquinones/chemistry*
  2. Ahmad R, Kaus NHM, Hamid S
    Adv Exp Med Biol, 2020;1292:65-82.
    PMID: 30560443 DOI: 10.1007/5584_2018_302
    INTRODUCTION: Drug resistance has been a continuous challenge in cancer treatment. The use of nanotechnology in the development of new cancer drugs has potential. One of the extensively studied compounds is thymoquinone (TQ), and this work aims to compare two types of TQ-nanoformulation and its cytotoxicity toward resistant breast cancer cells.

    METHOD: TQ-nanoparticles were prepared and optimized by using two different formulations with different drugs to PLGA-PEG ratio (1:20 and 1:7) and different PLGA-PEG to Pluronic F68 ratio (10:1 and 2:1). The morphology and size were determined using TEM and DLS. Characterization of particles was done using UV-VIS, ATR-IR, entrapment efficiency, and drug release. The effects of drug, polymer, and surfactants were compared between the two formulations. Cytotoxicity assay was performed using MTS assay.

    RESULTS: TEM finding showed 96% of particles produced with 1:7 drug to PLGA-PEG were less than 90 nm in size and spherical in shape. This was confirmed with DLS which showed smaller particle size than those formed with 1:20 drug to PLGA-PEG ratio. Further analysis showed zeta potential was negatively charged which could facilitate cellular uptake as reported previously. In addition, PDI value was less than 0.1 in both formulations indicating monodispersed and less broad in size distribution. The absorption peak of PLGA-PEG-TQ-Nps was at 255 nm. The 1:7 drug to polymer formulation was selected for further analysis where the entrapment efficiency was 79.9% and in vitro drug release showed a maximum release of TQ of 50%. Cytotoxicity result showed IC50 of TQ-nanoparticle at 20.05 μM and free TQ was 8.25 μM.

    CONCLUSION: This study showed that nanoparticle synthesized with 1:7 drug to PLGA-PEG ratio and 2:1 PLGA-PEG to Pluronic F68 formed nanoparticles with less than 100 nm and had spherical shape as confirmed with DLS. This could facilitate its transportation and absorption to reach its target. There was conserved TQ stability as exhibited slow release of this volatile oil. The TQ-nanoparticles showed selective cytotoxic effect toward UACC 732 cells compared to MCF-7 breast cancer cells.

    Matched MeSH terms: Benzoquinones/chemistry*
  3. Hossan MS, Fatima A, Rahmatullah M, Khoo TJ, Nissapatorn V, Galochkina AV, et al.
    Arch Virol, 2018 Aug;163(8):2121-2131.
    PMID: 29633078 DOI: 10.1007/s00705-018-3842-6
    Viral respiratory infections are raising serious concern globally. Asian medicinal plants could be useful in improving the current treatment strategies for influenza. The present study examines the activity of five plants from Bangladesh against influenza virus. MDCK cells infected with influenza virus A/Puerto Rico/8/34 (H1N1) were treated with increasing concentrations of ethyl acetate extracts, and their cytotoxicity (CC50), virus-inhibiting activity (IC50), and selectivity index (SI) were calculated. The ethyl acetate extract of fruits of Embelia ribes Burm. f. (Myrsinaceae) had the highest antiviral activity, with an IC50 of 0.2 µg/mL and a SI of 32. Its major constituent, embelin, was further isolated and tested against the same virus. Embelin demonstrated antiviral activity, with an IC50 of 0.3 µM and an SI of 10. Time-of-addition experiments revealed that embelin was most effective when added at early stages of the viral life cycle (0-1 h postinfection). Embelin was further evaluated against a panel of influenza viruses including influenza A and B viruses that were susceptible or resistant to rimantadine and oseltamivir. Among the viruses tested, avian influenza virus A/mallard/Pennsylvania/10218/84 (H5N2) was the most susceptible to embelin (SI = 31), while A/Aichi/2/68 (H3N2) virus was the most resistant (SI = 5). In silico molecular docking showed that the binding site for embelin is located in the receptor-binding domain of the viral hemagglutinin. The results of this study provide evidence that E. ribes can be used for development of a novel alternative anti-influenza plant-based agent.
    Matched MeSH terms: Benzoquinones/chemistry
  4. Ong YS, Saiful Yazan L, Ng WK, Noordin MM, Sapuan S, Foo JB, et al.
    Int J Nanomedicine, 2016 11 09;11:5905-5915.
    PMID: 27877037
    BACKGROUND: Thymoquinone (TQ), the predominant active lipophilic component in Nigella sativa seed oil, has a variety of pharmacological properties such as anticancer activities. However, translation of TQ to clinical phase is still not possible due to its hydrophobic properties. This problem can be solved by encapsulating it in nanoformulations to enhance its pharmacological properties. In our previous study, TQ has been successfully encapsulated in a nanostructured lipid carrier (hereinafter referred to as TQNLC) with excellent physiochemical properties such as high encapsulation efficiency, high drug-loading capacity, particle diameter less than 100 nm, and stability up to 2 years. In vitro studies also proved that TQNLC exhibited antiproliferative activity toward breast and cervical cancer cell lines. However, no toxicity profile related to this formulation has been reported. In this study, we determine and compare the in vivo toxicity of both TQNLC and TQ.

    MATERIALS AND METHODS: The in vivo toxicity (acute and subacute toxicity) study was carried out by oral administration of TQNLC and TQ to BALB/c mice. Animal survival, body weight, organ weight-to-body weight ratio, hematological profile, biochemistry profile, and histopathological changes were analyzed.

    RESULTS: In acute toxicity, TQ that is loaded in nanostructured lipid carrier (NLC) was found to be less toxic than pure TQ. It can be concluded that encapsulation of TQ in lipid carrier minimizes the toxicity of the compound. In the subacute toxicity study, oral administration of 100 mg/kg of TQNLC and TQ did not cause mortality to either male or female but resulted in toxicity to the liver. It is postulated that long-term consumption of TQNLC and TQ may cause toxicity to the liver but not to the extent of altering the functions of the organ. For both treatments, the no observed adverse effect level (NOAEL) was found to be 10 mg/kg/d for mice in both sexes.

    CONCLUSION: For long-term oral consumption, TQ and TQNLC at a dose of 10 mg/kg is safe in mice and does not exert any toxic effect. The results provide safety information of TQNLC, which would further help researchers in clinical use.

    Matched MeSH terms: Benzoquinones/chemistry*
  5. Al-Qubaisi MS, Rasedee A, Flaifel MH, Eid EEM, Hussein-Al-Ali S, Alhassan FH, et al.
    Eur J Pharm Sci, 2019 May 15;133:167-182.
    PMID: 30902654 DOI: 10.1016/j.ejps.2019.03.015
    Thymoquinone is an effective phytochemical compound in the treatment of various diseases. However, its practical administration has been limited due to poor aqueous solubility and bioavailability. In this work, we developed a novel inclusion complex of thymoquinone and hydroxypropyl-β-cyclodextrin that features improved solubility and bioactivity. The drug solubility was markedly accelerated in the increasing ratio of hydroxypropyl-β-cyclodextrin to thymoquinone amount. The formation of the thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex was evidenced using X-ray diffraction, differential scanning calorimetry, thermal gravimetric analysis, Fourier transform infrared, scanning electron microscopy and nuclear magnetic resonance. The release behavior of the complex, as well as of their mixtures, was examined in artificial gastric (pH 1.2) and intestinal (pH 6.8) dissolution media. The formulated complex released the drug rapidly at the initial stage, followed by a slow release. Thermodynamic parameters ΔH, ΔS and ΔG were calculated with temperatures ranging from 20 to 45 °C to evaluate the complexation process. The activity of the inclusion complex was evaluated on IgE-mediated allergic response in rat basophilic leukemia (RBL-2H3) cells by monitoring key allergic mediators. The results revealed that compared with free thymoquinone, the inclusion complex more strongly inhibited the release of histamine, tumor necrosis factor-α, and interleukin-4, and was not cytotoxic at the tested thymoquinone concentrations (0.125-4 μg/mL) indicating the inclusion complex possibly had better antiallergic effects. Our finding suggested that the inclusion complex achieved prolonged action and reduced side-effect of thymoquinone.
    Matched MeSH terms: Benzoquinones/chemistry
  6. Yeong LT, Abdul Hamid R, Saiful Yazan L, Khaza'ai H, Awang Hamsin DE
    Nat Prod Res, 2014;28(22):2026-30.
    PMID: 24836304 DOI: 10.1080/14786419.2014.917415
    An isomeric mixture of α,β-amyrin (triterpene) and 2-methoxy-6-undecyl-1,4-benzoquinone (quinone) isolated from the Ardisia crispa root hexane (ACRH) extract was reported to possess anti-inflammatory properties in vivo. Considering the close association between inflammation and cancer, on top of the lack of antitumour study on those compounds, this study aimed to determine the potential of both compounds against tumour promotion in vitro, either as single agent or in combination. Triterpene and quinone compounds, as well as triterpene-quinone fraction (TQF) and ACRH were subjected to inhibition of Epstein-Barr virus-early antigen (EBV-EA) activation assay for that purpose. Compared with curcumin (positive control), inhibition against EBV-EA activation occurred in the order: ACRH>TQF ≥ curcumin>α,β-amyrin ≥ 2-methoxy-6-undecyl-1,4-benzoquinone. These findings reported, for the first time, the antitumor-promoting effect of α,β-amyrin and 2-methoxy-6-undecyl-1,4-benzoquinone from the roots of A. crispa, which was enhanced when both compounds act in synergy.
    Matched MeSH terms: Benzoquinones/chemistry
  7. Yeong LT, Hamid RA, Yazan LS, Khaza'ai H
    Asian Pac J Cancer Prev, 2013;14(4):2301-5.
    PMID: 23725131
    Ardisia crispa (Family: Myrsinaceae) is an evergreen, fruiting shrub that has been traditionally used as folklore medicine. Despite a scarcity of research publications, we have succeeded in showing suppressive effects on murine skin papillomagenesis. In extension, the present research was aimed at determining the effect of a quinone-rich fraction (QRF) isolated from the same root hexane extract on both initiation and promotion stages of carcinogenesis, at the selected dose of 30 mg/kg. Mice (groups I-IV) were initiated with a single dose of 7,12-dimethylbenz(α)anthracene (DMBA, 100 μg/100 μl) followed by repeated promotion of croton oil (1%) twice weekly for 20 weeks. In addition, group I (anti-initiation) received QRF 7 days before and after DMBA; group II (anti-promotion) received QRF 30 minutes before each croton oil application; group III (anti-initiation/ promotion) was treated with QRF as a combination of group I and II. A further two groups served as vehicle control (group V) and treated control (group VI). As carcinogen control, group IV showed the highest tumor volume (8.79±5.44) and tumor burden (3.60±1.17). Comparatively, group III revealed only 20% of tumor incidence, tumor burden (3.00±1.00) and tumor volume (2.40±1.12), which were significantly different from group IV. Group II also showed significant reduction of tumor volume (3.11), tumor burden (3.00) and tumor incidence (11.11%), along with prominent increase of latency period of tumor formation (week 12). Group I, nonetheless, demonstrated marked increment of tumor incidence by 40% with prompted latency period of tumor formation (week 7). No tumor formation was observed in groups V and VI. This study provided clear evidence of inhibitory effects of QRF during promotion period which was in agreement with our previous findings. The mechanism(s) underlying such effects have yet to be elucidated.
    Matched MeSH terms: Benzoquinones/chemistry*
  8. Wong PL, Fauzi NA, Mohamed Yunus SN, Abdul Hamid NA, Abd Ghafar SZ, Azizan A, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640504 DOI: 10.3390/molecules25133067
    Plants and plant-based products have been used for a long time for medicinal purposes. This study aimed to determine the antioxidant and anti-α-glucosidase activities of eight selected underutilized plants in Malaysia: Leucaena leucocephala, Muntingia calabura, Spondias dulcis, Annona squamosa, Ardisia elliptica, Cynometra cauliflora, Ficus auriculata, and Averrhoa bilimbi. This study showed that the 70% ethanolic extract of all plants exhibited total phenolic content (TPC) ranging from 51 to 344 mg gallic acid equivalent (GAE)/g dry weight. A. elliptica showed strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activities, with half maximal inhibitory concentration (IC50) values of 2.17 and 49.43 μg/mL, respectively. Most of the tested plant extracts showed higher inhibition of α-glucosidase enzyme activity than the standard, quercetin, particularly A. elliptica, F. auriculata, and M. calabura extracts with IC50 values of 0.29, 0.36, and 0.51 μg/mL, respectively. A total of 62 metabolites including flavonoids, triterpenoids, benzoquinones, and fatty acids were tentatively identified in the most active plant, i.e., A. elliptica leaf extract, by using ultra-high-performance liquid chromatography (UHPLC)-electrospray ionization (ESI) Orbitrap MS. This study suggests a potential natural source of antioxidant and α-glucosidase inhibitors from A. elliptica.
    Matched MeSH terms: Benzoquinones/chemistry
  9. Ibiyeye KM, Zuki ABZ
    Int J Mol Sci, 2020 Mar 10;21(5).
    PMID: 32164352 DOI: 10.3390/ijms21051900
    Cancer stem cells CSCs (tumour-initiating cells) are responsible for cancer metastasis and recurrence associated with resistance to conventional chemotherapy. This study generated MBA MD231 3D cancer stem cells enriched spheroids in serum-free conditions and evaluated the influence of combined doxorubicin/thymoquinone-loaded cockle-shell-derived aragonite calcium carbonate nanoparticles. Single loaded drugs and free drugs were also evaluated. WST assay, sphere forming assay, ALDH activity analysis, Surface marker of CD44 and CD24 expression, apoptosis with Annexin V-PI kit, cell cycle analysis, morphological changes using a phase contrast light microscope, scanning electron microscopy, invasion assay and migration assay were carried out; The combination therapy showed enhanced apoptosis, reduction in ALDH activity and expression of CD44 and CD24 surface maker, reduction in cellular migration and invasion, inhibition of 3D sphere formation when compared to the free drugs and the single drug-loaded nanoparticle. Scanning electron microscopy showed poor spheroid formation, cell membrane blebbing, presence of cell shrinkage, distortion in the spheroid architecture; and the results from this study showed that combined drug-loaded cockle-shell-derived aragonite calcium carbonate nanoparticles can efficiently destroy the breast CSCs compared to single drug-loaded nanoparticle and a simple mixture of doxorubicin and thymoquinone.
    Matched MeSH terms: Benzoquinones/chemistry
  10. Tubesha Z, Imam MU, Mahmud R, Ismail M
    Molecules, 2013 Jun 26;18(7):7460-72.
    PMID: 23803717 DOI: 10.3390/molecules18077460
    Toxicological studies constitute an essential part of the effort in developing an herbal medicine into a drug product. A newly developed thymoquinone-rich fraction nanoemulsion (TQRFNE) has been prepared using a high pressure homogenizer. The purpose of this study was to investigate the potential acute toxicity of this nanoemulsion in Sprague Dawley rats. The acute toxicity studies were conducted as per the OECD guidelines 425, allowing for the use of test dose limit of 20 mL TQRFNE (containing 44.5 mg TQ)/kg. TQRFNE and distilled water (DW) as a control were administered orally to both sexes of rats on Day 0 and observed for 14 days. All the animals appeared normal, and healthy throughout the study. There was no observed mortality or any signs of toxicity during the experimental period. The effects of the TQRFNE and DW groups on general behavior, body weight, food and water consumption, relative organ weight, hematology, histopathology, and clinical biochemistry were measured. All the parameters measured were unaffected as compared to the control (DW) group. The administration of 20 mL TQRFNE /kg was not toxic after an acute exposure.
    Matched MeSH terms: Benzoquinones/chemistry
  11. Ng WK, Yazan LS, Ismail M
    Toxicol In Vitro, 2011 Oct;25(7):1392-8.
    PMID: 21609759 DOI: 10.1016/j.tiv.2011.04.030
    Thymoquinone (TQ), the active constituent of Nigella sativa or black cumin exhibited cytotoxic effects in several cancer cell lines. In this study, the cytotoxicity of TQ in human cervical squamous carcinoma cells (SiHa) was investigated. TQ was cytotoxic towards SiHa cells with IC50 values of 10.67 ± 0.12 and 9.33 ± 0.19 μg/mL as determined by MTT assay and trypan blue dye exclusion test, respectively, after 72 h of incubation. TQ was more cytotoxic towards SiHa cells compared to cisplatin. Interestingly, TQ was less cytotoxic towards the normal cells (3T3-L1 and Vero). Cell cycle analysis performed by flowcytometer showed a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Apoptosis induction by TQ was further confirmed by Annexin V/PI and AO/PI staining. Significant elevation of p53 and down-regulation of the anti-apoptotic Bcl-2 protein was found in the treated cells, without any changes in the expression of the pro-apoptotic Bax protein. In conclusion, thymoquinone from N. sativa was more potent than cisplatin in elimination of SiHa cells via apoptosis with down-regulation of Bcl-2 protein.
    Matched MeSH terms: Benzoquinones/chemistry
  12. Permana D, Lajis NH, Mackeen MM, Ali AM, Aimi N, Kitajima M, et al.
    J Nat Prod, 2001 Jul;64(7):976-9.
    PMID: 11473441
    Two new prenylated compounds, the benzoquinone atrovirinone (1) and the depsidone atrovirisidone (2), were isolated from the roots of Garcinia atroviridis. Their structures were determined on the basis of the analysis of spectroscopic data. While compound 2 showed some cytotoxicity against HeLa cells, both compounds 1 and 2 were only mildly inhibitory toward Bacillus cereus and Staphylococcus aureus.
    Matched MeSH terms: Benzoquinones/chemistry
  13. Ismail N, Ismail M, Azmi NH, Bakar MFA, Yida Z, Stanslas J, et al.
    Chem Biol Interact, 2017 Sep 25;275:61-73.
    PMID: 28734741 DOI: 10.1016/j.cbi.2017.07.014
    The study determined the effect of thymoquinone rich fraction (TQRF) and thymoquinone (TQ) in the forms of nano- and conventional emulsions on learning and memory, lipid peroxidation, total antioxidant status, antioxidants genes expression and soluble β-amyloid (Aβ) levels in rats fed with a high fat-cholesterol diet (HFCD). The TQRF was extracted from Nigella sativa seeds using a supercritical fluid extraction system and prepared into nanoemulsion, which later named as TQRF nanoemulsion (TQRFNE). Meanwhile, TQ was acquired commercially and prepared into thymoquinone nanoemulsion (TQNE). The TQRF and TQ conventional emulsions (CE), named as TQRFCE and TQCE, respectively were studied for comparison. Statin (simvastatin) and non-statin (probucol) cholesterol-lowering agents, and a mild-to-severe Alzheimer's disease drug (donepezil) were served as control drugs. The Sprague Dawley rats were fed with HFCD for 6 months, and treated with the intervention groups via oral gavage daily for the last 3 months. As a result, HFCD-fed rats exhibited hypercholesterolaemia, accompanied by memory deficit, increment of lipid peroxidation and soluble Aβ levels, decrement of total antioxidant status and down-regulation of antioxidants genes expression levels. TQRFNE demonstrated comparable effects to the other intervention groups and control drugs in serum biomarkers as well as in the learning and memory test. Somehow, TQRFNE was more prominent than those intervention groups and control drugs in brain biomarkers concomitant to gene and protein expression levels. Supplementation of TQRFNE into an HFCD thus could ameliorate memory deficit, lipid peroxidation and soluble Aβ levels as well as improving the total antioxidant status and antioxidants genes expression levels.
    Matched MeSH terms: Benzoquinones/chemistry
  14. Ong YS, Saiful Yazan L, Ng WK, Abdullah R, Mustapha NM, Sapuan S, et al.
    Nanomedicine (Lond), 2018 07;13(13):1567-1582.
    PMID: 30028248 DOI: 10.2217/nnm-2017-0322
    AIM: To investigate the enhancement of anticancer activity of thymoquinone (TQ) by the use of nanostructured lipid carrier (NLC) in 4T1 tumor-bearing female BALB/c mice.

    MATERIAL & METHODS: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice.

    RESULTS & CONCLUSION: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.

    Matched MeSH terms: Benzoquinones/chemistry
  15. Salim LZ, Othman R, Abdulla MA, Al-Jashamy K, Ali HM, Hassandarvish P, et al.
    PLoS One, 2014;9(12):e115340.
    PMID: 25531768 DOI: 10.1371/journal.pone.0115340
    BACKGROUND: Thymoquinone is an active ingredient isolated from Nigella sativa (Black Seed). This study aimed to evaluate the in vitro and in vivo anti-leukemic effects of thymoquinone on WEHI-3 cells.

    METHODOLOGY/PRINCIPAL FINDINGS: The cytotoxic effect of thymoquinone was assessed using an MTT assay, while the inhibitory effect of thymoquinone on murine WEHI-3 cell growth was due to the induction of apoptosis, as evidenced by chromatin condensation dye, Hoechst 33342 and acridine orange/propidium iodide fluorescent staining. In addition, Annexin V staining for early apoptosis was performed using flowcytometric analysis. Apoptosis was found to be associated with the cell cycle arrest at the S phase. Expression of Bax, Bcl2 and HSP 70 proteins were observed by western blotting. The effects of thymoquinone on BALB/c mice injected with WEHI-3 cells were indicated by the decrease in the body, spleen and liver weights of the animal, as compared to the control.

    CONCLUSION: Thymoquinone promoted natural killer cell activities. This compound showed high toxicity against WEHI-3 cell line which was confirmed by an increase of the early apoptosis, followed by up-regulation of the anti-apoptotic protein, Bcl2, and down-regulation of the apoptotic protein, Bax. On the other hand, high reduction of the spleen and liver weight, and significant histopathology study of spleen and liver confirmed that thymoquinone inhibited WEHI-3 growth in the BALB/c mice. Results from this study highlight the potential of thymoquinone to be developed as an anti-leukemic agent.

    Matched MeSH terms: Benzoquinones/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links