Displaying publications 1 - 20 of 242 in total

Abstract:
Sort:
  1. Lee WX, Basri DF, Ghazali AR
    Molecules, 2017 Mar 17;22(3).
    PMID: 28304328 DOI: 10.3390/molecules22030463
    The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination with gentamicin were assessed using checkerboard assay and time-kill kinetic study. Results of the present study showed that the combination effects of pterostilbene with gentamicin were synergistic (FIC index < 0.5) against three susceptible bacteria strains: Staphylococcus aureus ATCC 25923, Escherichia coli O157 and Pseudomonas aeruginosa 15442. However, the time-kill study showed that the interaction was indifference which did not significantly differ from the gentamicin treatment. Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 2 to 8 h treatment with 0.5 × MIC of pterostilbene and gentamicin. The identified combinations could be of effective therapeutic value against bacterial infections. These findings have potential implications in delaying the development of bacterial resistance as the antibacterial effect was achieved with the lower concentrations of antibacterial agents.
    Matched MeSH terms: Bacteria/drug effects*; Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects
  2. El Zowalaty ME, Hussein Al Ali SH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ
    Int J Nanomedicine, 2015;10:3269-74.
    PMID: 25995633 DOI: 10.2147/IJN.S74469
    Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of Fe(2+) and Fe(3+) iron salts in alkali media. MNPs were coated by chitosan (CS) to produce CS-MNPs. Streptomycin (Strep) was loaded onto the surface of CS-MNPs to form a Strep-CS-MNP nanocomposite. MNPs, CS-MNPs, and the nanocomposites were subsequently characterized using X-ray diffraction and were evaluated for their antibacterial activity. The antimicrobial activity of the as-synthesized nanoparticles was evaluated using different Gram-positive and Gram-negative bacteria, as well as Mycobacterium tuberculosis. For the first time, it was found that the nanoparticles showed antimicrobial activities against the tested microorganisms (albeit with a more pronounced effect against Gram-negative than Gram-positive bacteria), and thus, should be further studied as a novel nano-antibiotic for numerous antimicrobial and antituberculosis applications. Moreover, since these nanoparticle bacteria fighters are magnetic, one can easily envision magnetic field direction of these nanoparticles to fight unwanted microorganism presence on demand. Due to the ability of magnetic nanoparticles to increase the sensitivity of imaging modalities (such as magnetic resonance imaging), these novel nanoparticles can also be used to diagnose the presence of such microorganisms. In summary, although requiring further investigation, this study introduces for the first time a new type of magnetic nanoparticle with microorganism theranostic properties as a potential tool to both diagnose and treat diverse microbial and tuberculosis infections.
    Matched MeSH terms: Bacteria/drug effects
  3. Khor SY, Jegathesan M
    Med J Malaysia, 1977 Sep;32(1):85-9.
    PMID: 609352
    Matched MeSH terms: Bacteria/drug effects*
  4. Chang JS, Chong MN, Poh PE, Ocon JD, Md Zoqratt MZH, Lee SM
    Environ Pollut, 2020 Apr;259:113867.
    PMID: 31896479 DOI: 10.1016/j.envpol.2019.113867
    This study aimed to evaluate the impacts of morphological-controlled ZnO nanoarchitectures on aerobic microbial communities during real wastewater treatment in an aerobic-photocatalytic system. Results showed that the antibacterial properties of ZnO nanoarchitectures were significantly more overwhelming than their photocatalytic properties. The inhibition of microbial activities in activated sludge by ZnO nanoarchitectures entailed an adverse effect on wastewater treatment efficiency. Subsequently, the 16S sequencing analysis were conducted to examine the impacts of ZnO nanoarchitectures on aerobic microbial communities, and found the significantly lower microbial diversity and species richness in activated sludge treated with 1D-ZnO nanorods as compared to other ZnO nanoarchitectures. Additionally, 1D-ZnO nanorods reduced the highest proportion of Proteobacteria phylum in activated sludge due to its higher proportion of active polar surfaces that facilitates Zn2+ ions dissolution. Pearson correlation coefficients showed that the experimental data obtained from COD removal efficiency and bacterial log reduction were statistically significant (p-value 
    Matched MeSH terms: Bacteria/drug effects
  5. Ramachandran H, Iqbal MA, Amirul AA
    Appl Biochem Biotechnol, 2014 Sep;174(2):461-70.
    PMID: 25099372 DOI: 10.1007/s12010-014-1080-2
    Microbial pigments are gaining intensive attention due to increasing awareness of the toxicity of synthetic colours. In this study, a novel polymer-producing bacterium designated as Cupriavidus sp. USMAHM13 was also found to produce yellow pigment when cultivated in nutrient broth. Various parameters such as temperature, pH and ratio of culture volume to flask volume were found to influence the yellow pigment production. UV-Visible, Fourier transform infrared and (13)C-nuclear magnetic resonance analyses revealed that the crude yellow pigment might probably represent new bioactive compound in the carotenoid family. The crude yellow pigment also exhibited a wide spectrum of antimicrobial activity against Gram-negative and Gram-positive bacteria with their inhibition zones and minimal inhibitory concentrations ranged from 25 to 38 mm and from 0.63 to 2.5 mg/ml, respectively. To the best of our knowledge, this is the first report on the identification and characterization of yellow pigment produced by bacterium belonging to the genus Cupriavidus.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects
  6. Al-Mohammed NN, Alias Y, Abdullah Z, Shakir RM, Taha EM, Hamid AA
    Molecules, 2013 Sep 26;18(10):11978-95.
    PMID: 24077176 DOI: 10.3390/molecules181011978
    Several new substituted sulfonamide compounds were synthesized and their structures were confirmed by ¹H-NMR, ¹³C-NMR, FT-IR, and mass spectroscopy. The antibacterial activities of the synthesized compounds were screened against standard strains of six Gram positive and four Gram negative bacteria using the microbroth dilution assay. Most of the compounds studied showed promising activities against both types of bacteria.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects
  7. Saad S, Taher M, Susanti D, Qaralleh H, Awang AF
    Asian Pac J Trop Biomed, 2012 Jun;2(6):427-9.
    PMID: 23569943 DOI: 10.1016/S2221-1691(12)60069-0
    To investigate the antimicrobial property of mangrove plant Sonneratia alba (S. alba).
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*; Gram-Positive Bacteria/drug effects*
  8. Zabidi MA, Yusoff NM, Kader ZS
    Indian J Pathol Microbiol, 2012 Jan-Mar;55(1):47-51.
    PMID: 22499300 DOI: 10.4103/0377-4929.94855
    Platelets release more than 30 cytokines to provide primary hemostatic function. In addition, platelets are also known to release antimicrobial peptides upon activation by thrombin.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*; Gram-Positive Bacteria/drug effects*
  9. Wiart C, Hannah A, Yusof M, Hamimah H, Sulaiman M
    J Herb Pharmacother, 2005;5(3):97-102.
    PMID: 16520301
    The crude methanol extract of Bearded Argostemma (Argostemma involucratum Hemsl., Rubiaceae) showed a good and broad spectrum of antibacterial activity against both Gram-negative and Gram-positive bacteria. The activity was increased on fractionation (hexane, dichloromethane and water), particularly in the aqueous fraction which was more active than the methanol extract and streptomycin (no activity was shown against tested moulds). Both the hexane and dichloromethane fractions were inactive. The objective of this experiment was to investigate the antibacterial activity of hexane, dichloromethane, and aqueous fractions of Argostemma involucratum Hemsl. The aqueous fraction of Bearded Argostemma may be a possible new option for the treatment of bacterial infections.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects
  10. Chung WY, Zhu Y, Mahamad Maifiah MH, Shivashekaregowda NKH, Wong EH, Abdul Rahim N
    J Antibiot (Tokyo), 2021 02;74(2):95-104.
    PMID: 32901119 DOI: 10.1038/s41429-020-00366-2
    Antimicrobial resistance (AMR) threatens the effective prevention and treatment of a wide range of infections. Governments around the world are beginning to devote effort for innovative treatment development to treat these resistant bacteria. Systems biology methods have been applied extensively to provide valuable insights into metabolic processes at system level. Genome-scale metabolic models serve as platforms for constraint-based computational techniques which aid in novel drug discovery. Tools for automated reconstruction of metabolic models have been developed to support system level metabolic analysis. We discuss features of such software platforms for potential users to best fit their purpose of research. In this work, we focus to review the development of genome-scale metabolic models of Gram-negative pathogens and also metabolic network approach for identification of antimicrobial drugs targets.
    Matched MeSH terms: Bacteria/drug effects; Gram-Negative Bacteria/drug effects*
  11. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2009 Dec;26(3):274-9.
    PMID: 20237441 MyJurnal
    The present study was designed to evaluate the antibacterial activities of Swietenia mahagoni crude methanolic (SMCM) seed extract. The antimicrobial activity of the oily extract against Gram-positive, Gram-negative, yeast and fungus strains was evaluated based on the inhibition zone using disc diffusion assay, minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC) values. The crude extract was subjected to various phytochemicals analysis. The demonstrated qualitative phytochemical tests exhibited the presences of common phytocompounds including alkaloids, terpenoids, antraquinones, cardiac glycosides, saponins, and volatile oils as major active constituents. The SMCM seed extract had inhibitory effects on the growth of Candida albicans, Staphylococcus aureus, Pseudomonas aeroginosa, Streptococcus faecalis and Proteus mirabillase and illustrated MIC and MBC values ranging from 25 mg/ml to 50 mg/ml.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects
  12. Shapi'i RA, Othman SH, Nordin N, Kadir Basha R, Nazli Naim M
    Carbohydr Polym, 2020 Feb 15;230:115602.
    PMID: 31887886 DOI: 10.1016/j.carbpol.2019.115602
    Chitosan nanoparticles (CNP) were synthesized via ionic gelation and used for the preparation of starch-based nanocomposite films containing different concentration of CNP (0, 5, 10, 15, 20% w/w). Antimicrobial properties of starch/CNP films was evaluated via in vitro (disc diffusion analysis) and in vivo (microbial count in wrapped cherry tomatoes) study. It was found that inhibitory zone of the 15 and 20% of starch/CNP films were clearly observed for all the tested bacteria including Bacillus cereus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. In vivo study revealed that the starch/CNP film (15% w/w) was more efficient to inhibit the microbial growth in cherry tomatoes (7 × 102 CFU/g) compared to neat starch film (2.15 × 103 CFU/g) thus confirmed the potential application of the films as antimicrobial food packaging.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects
  13. Farouk AE, Benafri A
    Saudi Med J, 2007 Sep;28(9):1422-4.
    PMID: 17768473
    Objective: To evaluate methanolic, ethanolic, acetone and aqueous extracts from different parts of Eurycoma longifolia (E. longifolia) (leave, stem, and root) for antibacterial activity against Gram-positive and Gram-negative bacteria and to utilize the leaves and stem parts rather than the root, which is already used for male sexual enhancement in Malaysia.

    Methods: The study took place in the Laboratory of Molecular Biology of Biotechnology Engineering Department, Malaysia between January 2005 and June 2006. Methanolic, ethanolic, acetone and aqueous extracts of leaves, stems and roots of E. longifolia were investigated for their antibacterial properties using Agar-well diffusion method.

    Results: The alcoholic and acetone extracts of the leaves and stem extracts were active on both Gram-positive and Gram-negative bacteria except against 2 strains of Gram-negative bacteria (Escherichia coli and Salmonella typhi). The root extracts had no antibacterial activity against Gram-positive and Gram-negative bacteria tested. Aqueous leaves extract showed antibacterial activity against Staphylococcus aureus and Serratia marscesens.

    Conclusion: The alcoholic and acetone extracts from leaves and stems of E. longifolia contain potent antibacterial agent(s). This plant can serve as a potential source of antibacterial compounds.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*; Gram-Positive Bacteria/drug effects*
  14. Latha LY, Darah I, Jain K, Sasidharan S
    Asian Pac J Trop Biomed, 2012 Feb;2(2):149-51.
    PMID: 23569886 DOI: 10.1016/S2221-1691(11)60210-4
    OBJECTIVE: To investigate the antimicrobial activity of methanolic extracts of different parts of Ixora species.

    METHODS: Antimicrobial activity was carried out using disc diffusion assay against fungi, gram-positive and gram-negative bacteria.

    RESULTS: All methanolic extracts of different parts of Ixora species showed a broad-spectrum of antibacterial and antiyeast activities, which inhibited the growth of at least one bacterium or yeast. There was no remarkable difference between different Ixora species observed in this study.

    CONCLUSIONS: The significant antimicrobial activity shown by this Ixora species suggests its potential against infections caused by pathogens. The extract may be developed as an antimicrobial agent.

    Matched MeSH terms: Gram-Negative Bacteria/drug effects*; Gram-Positive Bacteria/drug effects*
  15. Le Han H, Pham PTV, Kim SG, Chan SS, Khoo KS, Chew KW, et al.
    Mol Biotechnol, 2024 Dec;66(12):3618-3627.
    PMID: 38042757 DOI: 10.1007/s12033-023-00963-0
    Multidrug resistance to pathogens has posed a severe threat to public health. The threat could be addressed by antimicrobial peptides (AMPs) with broad-spectrum suppression. In this study, Brevibacillus halotolerans 7WMA2, isolated from marine sediment, produced AMPs against Gram-positive and Gram-negative bacteria. The AMPs were precipitated by ammonium sulfate 30% (w/v) from culture broth and dialyzed by a 1 kDa membrane. Tryptone Soy Agar (TSA) was used for the cultivation and resulted in the largest bacteria-inhibiting zones under aerobic conditions at 25 °C, 48 h. An SDS-PAGE gel overlay test revealed that strain 7WMA2 could produce AMPs of 5-10 kDa and showed no degradation when held at 121 °C for 30 min at a wide pH 2-12 range. The AMPs did not cause toxicity to HeLa cells with concentrations up to 500 µg/mL while increasing the arbitrary unit up to eight times. The study showed that the AMPs produced were unique, with broad-spectrum antimicrobial ability.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects
  16. Ibrahim D, Hong LS, Kuppan N
    Nat Prod Commun, 2013 Apr;8(4):493-6.
    PMID: 23738462
    The antibacterial efficiency of the methanolic extract of Phyllanthus niruri Linn. was investigated against pathogenic bacteria responsible for common infections of skin, and urinary and gastrointestinal tracts. The extract demonstrated antibacterial activities against all the Gram-positive and Gram-negative bacteria tested. The results obtained suggested that at higher concentrations the extract would eradicate the growth of bacterial cells. The bacterial cells, after exposure to the extract, showed complete alteration in their morphology, followed by collapse of the cells beyond repair. The study revealed that the methanolic extract of P. niruri may be an effective antibacterial agent to treat bacterial infections since the extract exhibited significant antimicrobial potency, comparable with that of the standard antibiotic chloramphenicol.
    Matched MeSH terms: Bacteria/drug effects
  17. Chelliapan S, Wilby T, Sallis PJ, Yuzir A
    Water Sci Technol, 2011;63(8):1599-606.
    PMID: 21866757
    Tylosin has been considered inhibiting COD removal in anaerobic digestion. In this study it is proven that this is not always the case. Accordingly, elevated concentrations of Tylosin (100-800mgL-1) could be tolerated by the anaerobic system. The influence of Tylosin concentrations on an up-flow anaerobic stage reactor (UASR) was assessed using additions of Tylosin phosphate concentrate. Results showed high efficiency for COD removal (average 93%) when Tylosin was present at concentrations ranging from 0 to 400 mg L-1. However, at Tylosin concentrations of 600 and 800 mg L-1 treatment efficiency declined to 85% and 75% removal respectively. The impact of Tylosin concentrations on archaeal activity were investigated and the analysis revealed that archaeal cells dominated the reactor, confirming that there was no detectable inhibition of the methanogens at Tylosin levels between 100 and 400mg L-1. Nevertheless, the investigation showed a slight reduction in the number of methanogens at Tylosin levels of 600 and 800 mg L-1. These results demonstrated that the methanogens were well adapted to Tylosin. It would not be expected that the process performance of the UASR would be affected, not even at a level well in excess of those appearing in real wastewater from a Tylosin production site.
    Matched MeSH terms: Bacteria/drug effects*
  18. Ridzwan BH, Kaswandi MA, Azman Y, Fuad M
    Gen. Pharmacol., 1995 Nov;26(7):1539-43.
    PMID: 8690242
    1. Three species of sea cucumbers found in the Sabah coastal areas were screened for the presence of antibacterial activity using three methods of extraction. Tests were conducted in vitro using the agar absorption method. 2. Both the lipid extract and the methanol-solvent extract from Holothuria atra, Holothuria scabra and Bohadshia argus were found to show no antibacterial activity. 3. Phosphate-buffered saline (PBS) from H. atra and B. argus, however, inhibited the growth of all gram-positive and gram-negative bacteria. 4. Comparisons were also made between extracts from the outer layer of H. atra and its inner part, and it was found that the extract from the outer layer showed less bacterial growth inhibition property. 5. The bacterial growth inhibition property of the PBS extract from H. atra, however, is dependent on the extract's concentration. Bacterial growth inhibition was apparent after 48 hr incubation.
    Matched MeSH terms: Bacteria/drug effects*
  19. Lim VK, Halijah MY
    Malays J Pathol, 1993 Jun;15(1):65-8.
    PMID: 8277793
    Cefepime is a new cephalosporin antibiotic which is highly active against both Gram-positive and Gram-negative organisms. The purpose of this study was to establish the in-vitro activity of cefepime and three other cephalosporins against recent clinical isolates from patients at the General Hospital Kuala Lumpur. A total of 334 strains comprising Enterobacteriaceae, non-fermentative Gram-negative bacilli and Staphylococcus aureus were tested for their sensitivity to cefepime, cefotaxime, ceftriaxone and ceftazidime. Minimum inhibitory concentrations of the antibiotics were established using an agar dilution method. With the exception of some strains of Flavobacterium meningosepticum, Xanthomonas maltophilia and other non-fermentative Gram-negative bacilli, cefepime was found to be active against a wide range of Gram-negative organisms. Cefepime was as or more active than the other cephalosporins against Acinetobacter, Enterobacteriaceae and methicillin-sensitive Staphylococcus aureus. Strains of Klebsiella and Salmonella that were resistant to the third generation cephalosporins were sensitive to cefepime. Cefepime could be a valuable alternative for the treatment of nosocomial infections due to multiply resistant organisms.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  20. Sivapragasam M, Moniruzzaman M, Goto M
    Biotechnol J, 2020 Apr;15(4):e1900073.
    PMID: 31864234 DOI: 10.1002/biot.201900073
    Ionic liquids (ILs), a class of materials with unique physicochemical properties, have been used extensively in the fields of chemical engineering, biotechnology, material sciences, pharmaceutics, and many others. Because ILs are very polar by nature, they can migrate into the environment with the possibility of inclusion in the food chain and bioaccumulation in living organisms. However, the chemical natures of ILs are not quintessentially biocompatible. Therefore, the practical uses of ILs must be preceded by suitable toxicological assessments. Among different methods, the use of microorganisms to evaluate IL toxicity provides many advantages including short generation time, rapid growth, and environmental and industrial relevance. This article reviews the recent research progress on the toxicological properties of ILs toward microorganisms and highlights the computational prediction of various toxicity models.
    Matched MeSH terms: Bacteria/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links