Displaying all 5 publications

Abstract:
Sort:
  1. Prakash BK, Low VL, Vinnie-Siow WY, Tan TK, Lim YA, Morvarid AR, et al.
    J Med Entomol, 2018 Aug 29;55(5):1337-1340.
    PMID: 29762747 DOI: 10.1093/jme/tjy072
    Canine babesiosis is an emerging tick-borne disease with a worldwide distribution, including Malaysia. While the prevalence of Babesia has been documented from dogs in Malaysia, occurrence of Babesia has been relatively little studied in their tick vectors. Accordingly, a total of 240 dogs and 140 Rhipicephalus sanguineus sensu lato (s.l.) (Acari: Ixodidae) ticks from Malaysia were molecularly screened for the presence of Babesia protozoa in the present study. Babesia gibsoni was only detected in ticks (1.4%), whereas Babesia vogeli was detected in both ticks (1.4%) and dogs (2.1%). This study highlights the detection of B. gibsoni and B. vogeli for the first time, in both adult and nymphal stages of R. sanguineus s.l. in Malaysia, suggesting the potential role of this tick species in transmitting canine babesiosis.
    Matched MeSH terms: Babesia/genetics
  2. Terao M, Akter S, Yasin MG, Nakao R, Kato H, Alam MZ, et al.
    Infect Genet Evol, 2015 Apr;31:53-60.
    PMID: 25620376 DOI: 10.1016/j.meegid.2015.01.011
    Babesia gibsoni is a tick-borne hemoprotozoan parasite of dogs that often causes fever and hemolytic illness. Detection of B. gibsoni has been predominantly reported in Asian countries, including Japan, Korea, Taiwan, Malaysia, Bangladesh and India. The present study shows the first molecular characterization of B. gibsoni detected from dogs in Bangladesh. Blood samples were collected on FTA® Elute cards from 50 stray dogs in Mymensingh District in Bangladesh. DNA eluted from the cards was subjected to nested PCR for the 18S rRNA gene of Babesia species. Approximately 800bp PCR products were detected in 15 of 50 dogs (30%). Based on restriction fragment length polymorphism (RFLP) and direct sequencing of the PCR products, all parasite isolates were identified as B. gibsoni. Furthermore, the BgTRAP (B. gibsoni thrombospondin-related adhesive protein) gene fragments were detected in 13 of 15 18S rRNA gene PCR positive blood samples. Phylogenetic analysis of the BgTRAP gene revealed that B. gibsoni parasites in Bangladesh formed a cluster, which was genetically different from other Asian B. gibsoni isolates. In addition, tandem repeat analysis of the BgTRAP gene clearly showed considerable genetic variation among Bangladeshi isolates. These results suggested that B. gibsoni parasites in a different genetic clade are endemic in dogs in Bangladesh. Further studies are required to elucidate the origin, distribution, vector and pathogenesis of B. gibsoni parasites circulating in dogs in Bangladesh.
    Matched MeSH terms: Babesia/genetics*
  3. Zahler M, Rinder H, Zweygarth E, Fukata T, Maede Y, Schein E, et al.
    Parasitology, 2000 Apr;120 ( Pt 4):365-9.
    PMID: 10811277
    18S rDNA sequences from 4 isolates of Babesia gibsoni originating from Japan, Malaysia and Sri Lanka were compared with a previously published, 0.5 kb portion of the 18S rDNA from a B. gibsoni isolate from California, USA, and with the corresponding 18S rDNA sequences of other Babesia spp. Distance, parsimony and maximum likelihood analyses showed almost identical genotypes among the small canine Babesia from Asia, but an unexpectedly distant genetic relationship to that from the USA. While the American isolate segregated together with B. equi, the Asian isolates showed a close relationship to B. divergens and B. odocoilei. These results indicate that small Babesia of dogs originating from North America and Asia belong to different, genetically distantly related species.
    Matched MeSH terms: Babesia/genetics
  4. Singh MN, Raina OK, Sankar M, Rialch A, Tigga MN, Kumar GR, et al.
    Infect Genet Evol, 2016 07;41:100-106.
    PMID: 27020545 DOI: 10.1016/j.meegid.2016.03.025
    Babesia gibsoni is a tick borne intraerythrocytic protozoan parasite causing piroplasmosis in dogs and has been predominantly reported in Asian countries, including Japan, Korea, Taiwan, Malaysia, Bangladesh and India. The present communication is the first evidence on the genetic diversity of B. gibsoni of dogs in India. Blood samples were collected from 164 dogs in north and northeast states of India and 13 dogs (7.9%) were found positive for B. gibsoni infection by microscopic examination of blood smears. Molecular confirmation of these microscopic positive cases for B. gibsoni was carried out by 18S rRNA nested-PCR, followed by sequencing. Nested-PCR for the 18S rRNA gene was also carried out on microscopically B. gibsoni negative samples that detected a higher percentage of dogs (28.6%) infected with B. gibsoni. Genetic diversity in B. gibsoni in India was determined by studying B. gibsoni thrombospondin-related adhesive protein (BgTRAP) gene fragments (855bp) in 19 isolates from four north and northeast states of India. Phylogenetic analysis of the BgTRAP gene revealed that B. gibsoni parasite in India and Bangladesh formed a distinct cluster away from other Asian B. gibsoni isolates available from Japan, Taiwan and Korea. In addition, tandem repeat analysis of the BgTRAP gene clearly showed considerable genetic variation among Indian isolates that was shared by B. gibsoni isolates of Bangladesh. These results suggested that B. gibsoni parasites in a different genetic clade are endemic in dogs in India and Bangladesh. Further studies are required for better understanding of the genetic diversity of B. gibsoni prevalent in India and in its neighbouring countries.
    Matched MeSH terms: Babesia/genetics*
  5. Nguyen VL, Colella V, Greco G, Fang F, Nurcahyo W, Hadi UK, et al.
    Parasit Vectors, 2020 Aug 15;13(1):420.
    PMID: 32799914 DOI: 10.1186/s13071-020-04288-8
    BACKGROUND: Ticks and fleas are considered amongst the most important arthropod vectors of medical and veterinary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and fleas from companion dogs and cats in East and Southeast Asia.

    METHODS: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp.

    RESULT: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)).

    CONCLUSION: Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.

    Matched MeSH terms: Babesia/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links