Displaying all 3 publications

Abstract:
Sort:
  1. Simovic I, Hilmi I, Ng RT, Chew KS, Wong SY, Lee WS, et al.
    United European Gastroenterol J, 2024 Feb;12(1):103-121.
    PMID: 37837511 DOI: 10.1002/ueg2.12477
    BACKGROUND: ATG16L1 plays a fundamental role in the degradative intracellular pathway known as autophagy, being a mediator of inflammation and microbial homeostasis. The variant rs2241880 can diminish these capabilities, potentially contributing to inflammatory bowel disease (IBD) pathogenesis.

    OBJECTIVES: To perform an updated meta-analysis on the association between ATG16L1 rs2241880 and IBD susceptibility by exploring the impact of age, ethnicity, and geography. Moreover, to investigate the association between rs2241880 and clinical features.

    METHODS: Literature searches up until September 2022 across 7 electronic public databases were performed for all case-control studies on ATG16L1 rs2241880 and IBD. Pooled odds ratios (ORP ) and 95% CI were calculated under the random effects model.

    RESULTS: Our analyses included a total of 30,606 IBD patients, comprising 21,270 Crohn's disease (CD) and 9336 ulcerative colitis (UC) patients, and 33,329 controls. ATG16L1 rs2241880 was significantly associated with CD susceptibility, where the A allele was protective (ORP : 0.74, 95% CI: 0.72-0.77, p-value: <0.001), while the G allele was a risk factor (ORP : 1.23, 95% CI: 1.09-1.39, p-value: 0.001), depending on the minor allele frequencies observed in this multi-ancestry study sample. rs2241880 was predominantly relevant in Caucasians from North America and Europe, and in Latin American populations. Importantly, CD patients harbouring the G allele were significantly more predisposed to perianal disease (ORP : 1.21, 95% CI: 1.07-1.38, p-value: 0.003).

    CONCLUSIONS: ATG16L1 rs2241880 (G allele) is a consistent risk factor for IBD in Caucasian cohorts and influences clinical outcomes. As its role in non-Caucasian populations remains ambiguous, further studies in under-reported populations are necessary.

    Matched MeSH terms: Autophagy-Related Proteins/genetics
  2. Kee BP, Ng JG, Ng CC, Hilmi I, Goh KL, Chua KH
    J Dig Dis, 2020 Jan;21(1):29-37.
    PMID: 31654602 DOI: 10.1111/1751-2980.12829
    OBJECTIVE: To investigate the association between genetic polymorphisms in ATG16L1 and IRGM genes and the development of Crohn's disease (CD) in Malaysian patients.

    METHODS: Altogether 335 participants were recruited, including 85 patients with CD and 250 unrelated healthy controls, and their informed consent was obtained. Genomic DNA was extracted via a conventional phenol-chloroform extraction method. Six single nucleotide polymorphisms (SNPs) in ATG16L1 and IRGM genes were genotyped using TaqMan SNP genotyping assays. Associations between SNP and CD were determined using Fisher's exact test, odds ratio, and 95% confidence interval. Statistical power and the Hardy-Weinberg equilibrium were also calculated.

    RESULTS: Two SNPs (rs2241880 and rs6754677) in the ATG16L1 gene were significantly associated with the onset of CD in the Malaysian population. The A allele and homozygous A/A genotype of the rs2241880 A/G polymorphism were protective against CD in the overall Malaysian and Malay population. The G allele and homozygous G/G genotype of the rs6754677 G/A polymorphism were protective in the Indian population, whereas the homozygous A/A genotype showed a risk of developing CD. The homozygous G/G genotype of IRGM rs11747270 was significantly present in the controls. However, this significance was not observed in a race-stratified analysis. All three ATG16L1 SNPs were associated with inflamed terminal ileum. IRGM rs4958847 and rs11747270 increased the risk of developing arthritis in patients with CD.

    CONCLUSION: We found a significant association between SNP, which are located in autophagy-related genes, and CD in a Malaysian population.

    Matched MeSH terms: Autophagy-Related Proteins/genetics*
  3. Molineros JE, Yang W, Zhou XJ, Sun C, Okada Y, Zhang H, et al.
    Hum Mol Genet, 2017 03 15;26(6):1205-1216.
    PMID: 28108556 DOI: 10.1093/hmg/ddx026
    We recently identified ten novel SLE susceptibility loci in Asians and uncovered several additional suggestive loci requiring further validation. This study aimed to replicate five of these suggestive loci in a Han Chinese cohort from Hong Kong, followed by meta-analysis (11,656 cases and 23,968 controls) on previously reported Asian and European populations, and to perform bioinformatic analyses on all 82 reported SLE loci to identify shared regulatory signatures. We performed a battery of analyses for these five loci, as well as joint analyses on all 82 SLE loci. All five loci passed genome-wide significance: MYNN (rs10936599, Pmeta = 1.92 × 10-13, OR = 1.14), ATG16L2 (rs11235604, Pmeta = 8.87 × 10 -12, OR = 0.78), CCL22 (rs223881, Pmeta = 5.87 × 10-16, OR = 0.87), ANKS1A (rs2762340, Pmeta = 4.93 × 10-15, OR = 0.87) and RNASEH2C (rs1308020, Pmeta = 2.96 × 10-19, OR = 0.84) and co-located with annotated gene regulatory elements. The novel loci share genetic signatures with other reported SLE loci, including effects on gene expression, transcription factor binding, and epigenetic characteristics. Most (56%) of the correlated (r2 > 0.8) SNPs from the 82 SLE loci were implicated in differential expression (9.81 × 10-198 
    Matched MeSH terms: Autophagy-Related Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links