Displaying all 7 publications

Abstract:
Sort:
  1. Ching CY, Casals J, Bowen ET, Simpson DI, Platt GS, Way HJ, et al.
    Ann Trop Med Parasitol, 1970 Sep;64(3):263-8.
    PMID: 5500097
    Matched MeSH terms: Arboviruses/isolation & purification*
  2. Knudsen AB, Lewis DJ, Tesh RB, Rudnick A, Jeffery J, Singh I
    J Med Entomol, 1979 Mar 23;15(3):286-91.
    PMID: 220422
    Matched MeSH terms: Arboviruses/isolation & purification*
  3. Weaver SC, Reisen WK
    Antiviral Res, 2010 Feb;85(2):328-45.
    PMID: 19857523 DOI: 10.1016/j.antiviral.2009.10.008
    Arthropod-borne viruses (arboviruses) are important causes of human disease nearly worldwide. All arboviruses circulate among wild animals, and many cause disease after spillover transmission to humans and agriculturally important domestic animals that are incidental or dead-end hosts. Viruses such as dengue (DENV) and chikungunya (CHIKV) that have lost the requirement for enzootic amplification now produce extensive epidemics in tropical urban centers. Many arboviruses recently have increased in importance as human and veterinary pathogens using a variety of mechanisms. Beginning in 1999, West Nile virus (WNV) underwent a dramatic geographic expansion into the Americas. High amplification associated with avian virulence coupled with adaptation for replication at higher temperatures in mosquito vectors, has caused the largest epidemic of arboviral encephalitis ever reported in the Americas. Japanese encephalitis virus (JEV), the most frequent arboviral cause of encephalitis worldwide, has spread throughout most of Asia and as far south as Australia from its putative origin in Indonesia and Malaysia. JEV has caused major epidemics as it invaded new areas, often enabled by rice culture and amplification in domesticated swine. Rift Valley fever virus (RVFV), another arbovirus that infects humans after amplification in domesticated animals, undergoes epizootic transmission during wet years following droughts. Warming of the Indian Ocean, linked to the El Niño-Southern Oscillation in the Pacific, leads to heavy rainfall in east Africa inundating surface pools and vertically infected mosquito eggs laid during previous seasons. Like WNV, JEV and RVFV could become epizootic and epidemic in the Americas if introduced unintentionally via commerce or intentionally for nefarious purposes. Climate warming also could facilitate the expansion of the distributions of many arboviruses, as documented for bluetongue viruses (BTV), major pathogens of ruminants. BTV, especially BTV-8, invaded Europe after climate warming and enabled the major midge vector to expand is distribution northward into southern Europe, extending the transmission season and vectorial capacity of local midge species. Perhaps the greatest health risk of arboviral emergence comes from extensive tropical urbanization and the colonization of this expanding habitat by the highly anthropophilic (attracted to humans) mosquito, Aedes aegypti. These factors led to the emergence of permanent endemic cycles of urban DENV and CHIKV, as well as seasonal interhuman transmission of yellow fever virus. The recent invasion into the Americas, Europe and Africa by Aedes albopictus, an important CHIKV and secondary DENV vector, could enhance urban transmission of these viruses in tropical as well as temperate regions. The minimal requirements for sustained endemic arbovirus transmission, adequate human viremia and vector competence of Ae. aegypti and/or Ae. albopictus, may be met by two other viruses with the potential to become major human pathogens: Venezuelan equine encephalitis virus, already an important cause of neurological disease in humans and equids throughout the Americas, and Mayaro virus, a close relative of CHIKV that produces a comparably debilitating arthralgic disease in South America. Further research is needed to understand the potential of these and other arboviruses to emerge in the future, invade new geographic areas, and become important public and veterinary health problems.
    Matched MeSH terms: Arboviruses/isolation & purification
  4. Platt GS, Way HJ, Bowen ET, Simpson DI, Hill MN, Kamath S, et al.
    Ann Trop Med Parasitol, 1975 Mar;69(1):65-71.
    PMID: 235907
    Thirty isolations of Tembusu virus and four of Sindbis virus were obtained from approximately 280 000 mosquitoes collected between October 1968 and February 1970 in Sarawak, particularly from K. Tijirak, a Land Dyak village 19 miles South of Kuching. Twenty-two isolations of Tembusu virus and two of Sindbis virus were from Culex tritaeniorhynchus; two of Tembusu virus and two of Sindbis virus came from Culex gelidus. Tembusu virus was active throughout the year at K. Tijirak, the highest infection rates in C. tritaeniorhynchus being in January-March and May-August, when the C. tritaeniorhynchus population was declining and ageing. These results confirm that C. tritaeniorhynchus is the principal arthopod host of Tembusu virus in Sarawak. Antibody studies suggest that birds, particularly domestic fowl, are probably vertebrate maintenance hosts of Tembusu and Sindbis viruses in Sarawak.
    Matched MeSH terms: Arboviruses/isolation & purification*
  5. Simpson DI, Way HJ, Platt GS, Bowen ET, Hill MN, Kamath S, et al.
    Trans R Soc Trop Med Hyg, 1975;69(1):35-8.
    PMID: 238314
    14 strains of Getah virus were isolated from a variety of mosquito species collected in Sarawak between October 1968 and February 1970. Ten strains were isolated from C. tritaeniorhynchus 7 of them at K. Tijirak. Single strains were isolated from C. gelidus, C. pseudovishnui, M. bonneae/dives and Aanopheles species. 6 of the isolates were obtained in October 1968 when Japanese encephalitis, Tembusu and Sindbis viruses were also very active. The available evidence suggest that Getah virus in Sarawak is maintained in a cycle similar to that of Japanese encephalitis virus and involves C. tritaeniorhynchus, C. gelidus and domestic pigs.
    Matched MeSH terms: Arboviruses/isolation & purification
  6. Vasilakis N, Tesh RB, Popov VL, Widen SG, Wood TG, Forrester NL, et al.
    Viruses, 2019 05 23;11(5).
    PMID: 31126128 DOI: 10.3390/v11050471
    In recent years, it has become evident that a generational gap has developed in the community of arbovirus research. This apparent gap is due to the dis-investment of training for the next generation of arbovirologists, which threatens to derail the rich history of virus discovery, field epidemiology, and understanding of the richness of diversity that surrounds us. On the other hand, new technologies have resulted in an explosion of virus discovery that is constantly redefining the virosphere and the evolutionary relationships between viruses. This paradox presents new challenges that may have immediate and disastrous consequences for public health when yet to be discovered arboviruses emerge. In this review we endeavor to bridge this gap by providing a historical context for the work being conducted today and provide continuity between the generations. To this end, we will provide a narrative of the thrill of scientific discovery and excitement and the challenges lying ahead.
    Matched MeSH terms: Arboviruses/isolation & purification
  7. Marchette NJ, Rudnick A, Garcia R, MacVean DW
    PMID: 34888
    A survey of the activity of three alphaviruses (Sindbis, getah and chikungunya) in Peninsular Malaysia was conducted between 1962 and 1970. Serum samples were examined from 3,917 vertebrates representing a wide variety of wild and domestic animals throughout the peninsula for hemagglutination-inhibiting and neutralizing antibodies. A total of 548,939 mosquitoes were collected from different habitats, including jungle, rural, suburban and urban areas, and the majority of the females taken were examined for the presence of virus. Two strains of Sindbis virus and one strain of getah virus were isolated from pools of Culex mosquitoes collected in and around domestic animal shelters. Analysis of the serological results indicated that, 1) getah virus is associated principally with large domestic animals, particularly swine, 2) Sindbis virus is associated with large domestic animals and birds, especially domestic ducks, and 3) chikungunya virus, which has not yet been isolated in Malaysia, appeared to be present at a very low level of activity, probably with wild monkeys as the vertebrate hosts.
    Matched MeSH terms: Arboviruses/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links