Displaying all 4 publications

Abstract:
Sort:
  1. Mazlan N, Horgan G, Stubbs RJ
    Physiol Behav, 2006 Apr 15;87(4):679-86.
    PMID: 16545404
    The purpose of the study was to examine the effect of energy density and food weight (volume) on subsequent intake.
    Matched MeSH terms: Appetite Regulation/physiology*
  2. Donald JA, Hamid NKA, McLeod JL
    Gen Comp Endocrinol, 2017 04 01;244:201-208.
    PMID: 27102941 DOI: 10.1016/j.ygcen.2016.04.015
    Water deprivation of the Spinifex hopping mouse, Notomys alexis, induced a biphasic pattern of food intake with an initial hypophagia that was followed by an increased, and then sustained food intake. The mice lost approximately 20% of their body mass and there was a loss of white adipose tissue. Stomach ghrelin mRNA was significantly higher at day 2 of water deprivation but then returned to the same levels as water-replete (day 0) mice for the duration of the experiment. Plasma ghrelin was unaffected by water deprivation except at day 10 where it was significantly increased. Plasma leptin levels decreased at day 2 and day 5 of water deprivation, and then increased significantly by the end of the water deprivation period. Water deprivation caused a significant decrease in skeletal muscle leptin mRNA expression at days 2 and 5, but then it returned to day 0 levels by day 29. In the hypothalamus, water deprivation caused a significant up-regulation in both ghrelin and neuropeptide Y mRNA expression, respectively. In contrast, hypothalamic GHSR1a mRNA expression was significantly down-regulated. A significant increase in LepRb mRNA expression was observed at days 17 and 29 of water deprivation. This study demonstrated that the sustained food intake in N. alexis during water deprivation was uncoupled from peripheral appetite-regulating signals, and that the hypothalamus appears to play an important role in regulating food intake; this may contribute to the maintenance of fluid balance in the absence of free water.
    Matched MeSH terms: Appetite Regulation/physiology*
  3. Freiria-Oliveira AH, Blanch GT, Pedrino GR, Cravo SL, Murphy D, Menani JV, et al.
    Am J Physiol Regul Integr Comp Physiol, 2015 Nov 01;309(9):R1082-91.
    PMID: 26333788 DOI: 10.1152/ajpregu.00432.2014
    Noradrenergic A2 neurons of the nucleus of the solitary tract (NTS) have been suggested to contribute to body fluid homeostasis and cardiovascular regulation. In the present study, we investigated the effects of lesions of A2 neurons of the commissural NTS (cNTS) on the c-Fos expression in neurons of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, arterial pressure, water intake, and urinary excretion in rats with plasma hyperosmolality produced by intragastric 2 M NaCl (2 ml/rat). Male Holtzman rats (280-320 g) received an injection of anti-dopamine-β-hydroxylase-saporin (12.6 ng/60 nl; cNTS/A2-lesion, n = 28) or immunoglobulin G (IgG)-saporin (12.6 ng/60 nl; sham, n = 24) into the cNTS. The cNTS/A2 lesions increased the number of neurons expressing c-Fos in the magnocellular PVN in rats treated with hypertonic NaCl (90 ± 13, vs. sham: 47 ± 20; n = 4), without changing the number of neurons expressing c-Fos in the parvocellular PVN or in the SON. Contrary to sham rats, intragastric 2 M NaCl also increased arterial pressure in cNTS/A2-lesioned rats (16 ± 3, vs. sham: 2 ± 2 mmHg 60 min after the intragastric load; n = 9), an effect blocked by the pretreatment with the vasopressin antagonist Manning compound (0 ± 3 mmHg; n = 10). In addition, cNTS/A2 lesions enhanced hyperosmolality-induced water intake (10.5 ± 1.4, vs. sham: 7.7 ± 0.8 ml/60 min; n = 8-10), without changing renal responses to hyperosmolality. The results suggest that inhibitory mechanisms dependent on cNTS/A2 neurons reduce water intake and vasopressin-dependent pressor response to an acute increase in plasma osmolality.
    Matched MeSH terms: Appetite Regulation/physiology
  4. Strickland SS, Duffield AE
    Ann Hum Biol, 1997 Sep-Oct;24(5):453-74.
    PMID: 9300122
    The areca nut is chewed by many of the world's population, mainly in South and Southeast Asia. Anthropometric data for 458 Sarawaki adults aged over 24 years, measured both in 1990 and in 1996, were examined in relation to use of tobacco and areca nut. Compared to non-smokers, smoking men were significantly taller and slightly (not significantly) thinner in both years, while smoking women were thinner in 1990 and slightly (not significantly) thinner in 1996. In both sexes there was an increase in the mean and range of body mass index (BMI, W/H2) over the 6-year interval. Smoking women showed a significantly smaller increment in BMI after allowing for areca nut use, which was associated with a similar trend, and this finding depended on including areca use in the model. The trend for men was similar. Possible effects of areca use could reflect variation in 'affluence' or conservatism, or appetite suppression. However, resting metabolic rate in 54 men and 70 women aged 24-60 years was associated with areca use. This association appeared to be mediated by the maximum room temperature of the 24 h preceding measurement. In women, a significant curvilinear association of RMR with maximum temperature was found in users of areca nut but not in non-users. In men, RMR was 7% higher (p < 0.05) in users of areca nut than in non-users, after allowing for age, height, weight, the sum of four skinfold thicknesses, and haemoglobin, but the association with maximum temperature was similar in both groups. It is speculated that constituents of areca nut modulate thermoregulatory pathways, resulting in prolonged temperature-dependent and hyperthermic heat production in this population; that males are more responsive to this effect than females; and that by this mechanism, and possibly also through centrally mediated effects on appetite for food, areca use could contribute to long-term variation in energy balance represented by change in BMI.
    Matched MeSH terms: Appetite Regulation/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links