Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Yoon YK, Ali MA, Wei AC, Choon TS, Ismail R
    Eur J Med Chem, 2015 Mar 26;93:614-24.
    PMID: 24996257 DOI: 10.1016/j.ejmech.2013.06.025
    A total of 51 novel benzimidazoles were synthesized by a 4-step reaction starting from basic compound 4-fluoro-3-nitrobenzoic acid under relatively mild reaction conditions. The structure of the novel benzimidazoles was confirmed by mass spectra as well as (1)H NMR spectroscopic data. Out of the 51 novel synthesized compounds, 42 of them were screened for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv strain using BacTiter-Glo™ Microbial Cell Viability (BTG) method. Results of activity screened using Alamar Blue method was also provided for comparison purposes. Two of the novel benzimidazoles synthesized showed moderately good activity with IC50 of less than 15 μM. Compound 5g, ethyl 2-(4-(trifluoromethyl)phenyl)-1-(2-morpholinoethyl)-1H-benzo[d]imidazole-5-carboxylate, was found to be the most active with IC50 of 11.52 μM.
    Matched MeSH terms: Antitubercular Agents/chemistry
  2. Devi Bala B, Muthusaravanan S, Choon TS, Ashraf Ali M, Perumal S
    Eur J Med Chem, 2014 Oct 6;85:737-46.
    PMID: 25129868 DOI: 10.1016/j.ejmech.2014.08.009
    A general method for the synthesis of a library of hitherto unreported amino-1,4-naphthoquinone-appended triazoles was accomplished via a sequential three-component reaction of substituted N-propargylaminonaphthoquinones with variously substituted alkyl bromides/2-bromonaphthalene-1,4-dione and sodium azide in the presence of Et3N/CuI in water. Aminonaphthoquinone-appended iminochromene-triazole hybrid heterocycles were also synthesized from the amino-1,4-naphthoquinone-appended-1,2,3-triazolylacetonitriles. All the triazole hybrids were screened for their in vitro activity against Mycobacterium tuberculosis H37Rv (MTB). Among the triazoles, 2-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)(4-(trifluoromethyl)phenyl)amino)naphthalene-1,4-dione (7d) emerged as the most active one with IC50 = 1.87 μM, being more potent than the anti-TB drugs, cycloserine (6 times), pyrimethamine (20 times) and equipotent as the drug ethambutol (IC50 
    Matched MeSH terms: Antitubercular Agents/chemistry
  3. Saifullah B, Hussein MZ, Hussein Al Ali SH
    Int J Nanomedicine, 2012;7:5451-63.
    PMID: 23091386 DOI: 10.2147/IJN.S34996
    Tuberculosis (TB), caused by the bacteria Mycobacterium tuberculosis, is notorious for its lethality to humans. Despite technological advances, the tubercle bacillus continues to threaten humans. According to the World Health Organization's 2011 global report on TB, 8.8 million cases of TB were reported in 2010, with a loss of 1.7 million human lives. As drug-susceptible TB requires long-term treatment of between 6 and 9 months, patient noncompliance remains the most important reason for treatment failure. For multidrug-resistant TB, patients must take second-line anti-TB drugs for 18-24 months and many adverse effects are associated with these drugs. Drug-delivery systems (DDSs) seem to be the most promising option for advancement in the treatment of TB. DDSs reduce the adverse effects of drugs and their dosing frequency as well as shorten the treatment period, and hence improve patient compliance. Further advantages of these systems are that they target the disease area, release the drugs in a sustained manner, and are biocompatible. In addition, targeted delivery systems may be useful in dealing with extensively drug-resistant TB because many side effects are associated with the drugs used to cure the disease. In this paper, we discuss the DDSs developed for the targeted and slow delivery of anti-TB drugs and their possible advantages and disadvantages.
    Matched MeSH terms: Antitubercular Agents/chemistry*
  4. Rohini K, Srikumar PS
    Appl Biochem Biotechnol, 2013 Mar;169(6):1790-8.
    PMID: 23340867 DOI: 10.1007/s12010-013-0110-9
    Tuberculosis (TB), an epidemic disease, affects the world with death rate of two million people every year. The bacterium Mycobacterium tuberculosis was found to be a more potent and disease-prolonged bacterium among the world due to multi-drug resistance. Emergence of new drug targets is needed to overcome the bacterial resistance that leads to control epidemic tuberculosis. The pathway thiamine biosynthesis was targeting M. tuberculosis due to its role in intracellular growth of the bacterium. The screening of enzymes involved in thiamin biosynthesis showed novel target thiazole synthase (ThiG) involved in catalysis of rearrangement of 1-deoxy-D-xylulose 5-phosphate (DXP) to produce the thiazole phosphate moiety of thiamine. We carried out homology modeling for ThiG to understand the structure-function relationship, and the model was refined with MD simulations. The results showed that the model predicted with (α + β)8-fold of synthase family proteins. Molecular docking of ThiG model with substrate DXP showed binding mode and key residues ARG46, ASN69, THR41, and LYS96 involved in the catalysis. First-line anti-tuberculosis drugs were docked with ThiG to identify the inhibition. The report showed the anti-tuberculosis drugs interact well with ThiG which may lead to block thiamin biosynthesis pathway.
    Matched MeSH terms: Antitubercular Agents/chemistry
  5. Bukhari SN, Franzblau SG, Jantan I, Jasamai M
    Med Chem, 2013 Nov;9(7):897-903.
    PMID: 23305394
    Tuberculosis, caused by Mycobacterium tuberculosis, is amongst the foremost infectious diseases. Treatment of tuberculosis is a complex process due to various factors including a patient's inability to persevere with a combined treatment regimen, the difficulty in eradicating the infection in immune-suppressed patients, and multidrug resistance (MDR). Extensive research circumscribing molecules to counteract this disease has led to the identification of many inhibitory small molecules. Among these are chalcone derivatives along with curcumin analogs. In this review article, we summarize the reported literature regarding anti tubercular activity of chalcone derivatives and synthetic curcumin analogs. Our goal is to provide an analysis of research to date in order to facilitate the synthesis of superior antitubercular chalcone derivatives and curcumin analogs.
    Matched MeSH terms: Antitubercular Agents/chemistry
  6. Amarnath Praphakar R, Jeyaraj M, Ahmed M, Suresh Kumar S, Rajan M
    Int J Biol Macromol, 2018 Oct 15;118(Pt B):1627-1638.
    PMID: 29981824 DOI: 10.1016/j.ijbiomac.2018.07.008
    Recently, drug functionalized biodegradable polymers have been appreciated to be imperative to fabricate multi-drug delivery nanosystems for sustainable drug release. In this work, amphiphilic chitosan-grafted-(cetyl alcohol-maleic anhydride-pyrazinamide) (CS-g-(CA-MA-PZA)) was synthesized by multi-step reactions. The incorporation of rifampicin (RF) and entrapment of silver nanoparticles (Ag NPs) on CS-g-(CA-MA-PZA) polymer was carried out by dialysis technique. From the FT-IR experiment, the polymer modification, incorporation of drugs and the entrapment of Ag NPs on micelles were confirmed. The surface morphology of Ag NPs, polymeric system and drug loaded micelles was described by SEM, TEM and AFM techniques. In addition, the controlled release behaviour of CS-g-(CA-MA-PZA) micelles was studied by UV-Vis spectroscopy. In vitro cell viability, cell apoptosis and cellular uptake experiments shows that multi-drug delivery system could enhance the biocompatibility and higher the cytotoxicity effect on the cells. Since the prepared amphiphilic polymeric micelles exhibit spotty features and the system is a promising strategy for a novel candidate for immediate therapeutically effects for alveolar macrophages.
    Matched MeSH terms: Antitubercular Agents/chemistry
  7. Ouyang Y, Yang H, Zhang P, Wang Y, Kaur S, Zhu X, et al.
    Molecules, 2017 Sep 22;22(10).
    PMID: 28937657 DOI: 10.3390/molecules22101592
    Tuberculosis (TB) is a chronic, potentially fatal disease caused by Mycobacterium tuberculosis (Mtb). The dihyrofolate reductase in Mtb (mt-DHFR) is believed to be an important drug target in anti-TB drug development. This enzyme contains a glycerol (GOL) binding site, which is assumed to be a useful site to improve the selectivity towards human dihyrofolate reductase (h-DHFR). There have been previous attempts to design drugs targeting the GOL binding site, but the designed compounds contain a hydrophilic group, which may prevent the compounds from crossing the cell wall of Mtb to function at the whole cell level. In the current study, we designed and synthesized a series of mt-DHFR inhibitors that contain a 2,4-diaminopyrimidine core with side chains to occupy the glycerol binding site with proper hydrophilicity for cell entry, and tested their anti-tubercular activity against Mtb H37Ra. Among them, compound 16l showed a good anti-TB activity (MIC = 6.25 μg/mL) with a significant selectivity against vero cells. In the molecular simulations performed to understand the binding poses of the compounds, it was noticed that only side chains of a certain size can occupy the glycerol binding site. In summary, the novel synthesized compounds with appropriate side chains, hydrophobicity and selectivity could be important lead compounds for future optimization towards the development of future anti-TB drugs that can be used as monotherapy or in combination with other anti-TB drugs or antibiotics. These compounds can also provide much information for further studies on mt-DHFR. However, the enzyme target of the compounds still needs to be confirmed by pure mt-DHFR binding assays.
    Matched MeSH terms: Antitubercular Agents/chemistry*
  8. Mohamad S, Ismail NN, Parumasivam T, Ibrahim P, Osman H, A Wahab H
    BMC Complement Altern Med, 2018 Jan 08;18(1):5.
    PMID: 29310671 DOI: 10.1186/s12906-017-2077-5
    BACKGROUND: Costus speciosus, Cymbopogon citratus, and Tabernaemontana coronaria are herbal plants traditionally used as remedies for symptoms of tuberculosis (TB) including cough. The aims of the present study were to evaluate the in vitro anti-TB activity of different solvent partitions of these plants, to identify the phytochemical compounds, and to assess the effects of the most active partitions on the growth kinetics and cellular integrity of the tubercle organism.

    METHODS: The in vitro anti-TB activity of different solvent partitions of the plant materials was determined against M. tuberculosis H37Rv using a tetrazolium colorimetric microdilution assay. The phytochemical compounds in the most active partition of each plant were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The effects of these partitions on the growth kinetics of the mycobacteria were evaluated over 7-day treatment period in a batch culture system. Their effects on the mycobacterial cellular integrity were observed under a scanning electron microscope (SEM).

    RESULTS: The respective n-hexane partition of C. speciosus, C. citratus, and T. coronaria exhibited the highest anti-TB activity with minimum inhibitory concentrations (MICs) of 100-200 μg/mL and minimum bactericidal concentration (MBC) of 200 μg/mL. GC-MS phytochemical analysis of these active partitions revealed that majority of the identified compounds belonged to lipophilic fatty acid groups. The active partitions of C. speciosus and T. coronaria exhibited high cidal activity in relation to time, killing more than 99% of the cell population. SEM observations showed that these active plant partitions caused multiple structural changes indicating massive cellular damages.

    CONCLUSIONS: The n-hexane partition of the plant materials exhibited promising in vitro anti-TB activity against M. tuberculosis H37Rv. Their anti-TB activity was supported by their destructive effects on the integrity of the mycobacterial cellular structure.

    Matched MeSH terms: Antitubercular Agents/chemistry
  9. Netalkar PP, Netalkar SP, Budagumpi S, Revankar VK
    Eur J Med Chem, 2014 May 22;79:47-56.
    PMID: 24721314 DOI: 10.1016/j.ejmech.2014.03.083
    Air and moisture stable coordination compounds of late first row transition metals, viz. Co(II), Ni(II), Cu(II) and Zn(II), with a newly designed ligand, 2-(2-benzo[d]thiazol-2-yl)hydrazono)propan-1-ol (LH), were prepared and successfully characterized using various spectro-analytical techniques. The molecular structures of the ligand and nickel complex were unambiguously determined by single-crystal X-ray diffraction method. The [Ni(LH)2]Cl2.3H2O complex is stabilized by intermolecular CH⋯π stacking interactions between the methyl hydrogen and the C18 atom of the phenyl ring (C11-H11B⋯C18) forming 1D zig-zag chain structure. Both, the ligand and its copper complex, were electrochemically active in the working potential range, showing quasi-reversible redox system. The interactions of all the compounds with calf thymus DNA have been comprehensively investigated using electronic absorption spectroscopy, viscosity, electrochemistry and thermal denaturation studies. The cleavage reaction on pBR322 DNA has been monitored by agarose gel electrophoresis. The results showed that the ligand can bind to CT-DNA through partial intercalation, whereas the complexes bind electrostatically. Further, [Ni(LH)2]Cl2.3H2O and [CuLCl(H2O)2] complexes in the series have high binding and cleavage affinity towards pBR322 DNA. Additionally, all the compounds were screened for anti-tuberculosis activity. All the complexes revealed an MIC value of 0.8 μg/mL, which is almost 8 times active than standard used (Streptomycin, 6.25 μg/mL).
    Matched MeSH terms: Antitubercular Agents/chemistry
  10. Keng Yoon Y, Ashraf Ali M, Choon TS, Ismail R, Chee Wei A, Suresh Kumar R, et al.
    Biomed Res Int, 2013;2013:926309.
    PMID: 24381946 DOI: 10.1155/2013/926309
    A total of seven novel benzimidazoles were synthesized by a 4-step reaction starting from 4-fluoro-3-nitrobenzoic acid under relatively mild reaction conditions. The synthesized compounds were screened for their antimycobacterial activity against M. tuberculosis H₃₇Rv (MTB-H₃₇Rv) and INH-resistant M. tuberculosis (INHR-MTB) strains using agar dilution method. Three of them displayed good activity with MIC of less than 0.2 μM. Compound ethyl 1-(2-(4-(4-(ethoxycarbonyl)-2-aminophenyl)piperazin-1-yl)ethyl)-2-(4-(5-(4-fluorophenyl)pyridin-3-ylphenyl-1H-benzo[d]imidazole-5-carboxylate (5 g) was found to be the most active with MIC of 0.112 μM against MTB-H₃₇Rv and 6.12 μM against INHR-MTB, respectively.
    Matched MeSH terms: Antitubercular Agents/chemistry
  11. Wei AC, Ali MA, Yoon YK, Ismail R, Choon TS, Kumar RS, et al.
    Bioorg Med Chem Lett, 2012 Aug 1;22(15):4930-3.
    PMID: 22749825 DOI: 10.1016/j.bmcl.2012.06.047
    A series of twelve dispiropyrrolidines were synthesized using [3+2]-cycloaddition reactions. The synthesized compounds were screened for their antimycobacterial activity against M. tuberculosis H(37)Rv and INH resistant M. tuberculosis strains using agar dilution method, four of them showed good activity with MIC of less than 1 μM. Compound 4'-[5-(4-fluorophenyl)pyridin-3-yl]-1'-methyldispiro[indan-2,2' pyrrolidine-3',2″-indan]-1,3,1″-trione (4b) was found to be the most active with MIC of 0.1215 and 5.121 μM, respectively.
    Matched MeSH terms: Antitubercular Agents/chemistry
  12. AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F
    Pharmacol Res, 2018 02;128:288-305.
    PMID: 29079429 DOI: 10.1016/j.phrs.2017.10.011
    Tuberculosis (TB) presently accounts for high global mortality and morbidity rates, despite the introduction four decades ago of the affordable and efficient four-drugs (isoniazid, rifampicin, pyrazinamide and ethambutol). Thus, a strong need exists for new drugs with special structures and uncommon modes of action to effectively overcome M. tuberculosis. Within this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that comprise a section of the innate immune system, are currently the leading potential agents for the treatment of TB. Many studies have recently illustrated the capability of anti-mycobacterial peptides to disrupt the normal mycobacterial cell wall function through various modes, thereby interacting with the intracellular targets, as well as encompassing nucleic acids, enzymes and organelles. This review presents a wide array of antimicrobial activities, alongside the associated properties of the AMPs that could be utilized as potential agents in therapeutic tactics for TB treatment.
    Matched MeSH terms: Antitubercular Agents/chemistry
  13. Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2014;9:4749-62.
    PMID: 25336952 DOI: 10.2147/IJN.S63608
    The primary challenge in finding a treatment for tuberculosis (TB) is patient non-compliance to treatment due to long treatment duration, high dosing frequency, and adverse effects of anti-TB drugs. This study reports on the development of a nanodelivery system that intercalates the anti-TB drug isoniazid into Mg/Al layered double hydroxides (LDHs). Isoniazid was found to be released in a sustained manner from the novel nanodelivery system in humans in simulated phosphate buffer solutions at pH 4.8 and pH 7.4. The nanodelivery formulation was highly biocompatible compared to free isoniazid against human normal lung and 3T3 mouse fibroblast cells. The formulation was active against Mycobacterium tuberculosis and gram-positive bacteria and gram-negative bacteria. Thus results show significant promise for the further study of these nanocomposites for the treatment of TB.
    Matched MeSH terms: Antitubercular Agents/chemistry*
  14. Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, et al.
    Drug Des Devel Ther, 2014;8:1029-36.
    PMID: 25114509 DOI: 10.2147/DDDT.S63753
    The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis.
    Matched MeSH terms: Antitubercular Agents/chemistry
  15. Saifullah B, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S
    Drug Des Devel Ther, 2013;7:1365-75.
    PMID: 24255593 DOI: 10.2147/DDDT.S50665
    We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.
    Matched MeSH terms: Antitubercular Agents/chemistry
  16. Lokesh BVS, Prasad YR, Shaik AB
    Infect Disord Drug Targets, 2019;19(3):310-321.
    PMID: 30556506 DOI: 10.2174/1871526519666181217120626
    BACKGROUND: Many synthetic procedures were reported till date to prepare pyrazoline derivatives. Some have published pyrazolines from different chalcone derivatives in the literature.

    OBJECTIVE: A series of new pyrazolines containing novel 2,5-dichloro-3-acetylthiophene chalcone moiety (PZT1-PZT20) have been synthesized, characterized by 1HNMR and 13CNMR and evaluated for them in vitro antitubercular activity against M. tuberculosis H37Rv strain and in vitro anticancer activity against DU-145 prostate cancer cell lines and all compounds were also screened for molecular docking studies against specific targeted protein domains.

    METHODS: All compounds were screened for potential activity against Mycobacterium tuberculosis H37Rv (MTB) strain and anticancer activity against DU-149 prostate cancer cell lines using MTT cytotoxicity assay.

    RESULTS: Among the series, compound PZT5 with 2", 4"-dichlorophenyl group at 5-position on the pyrazoline ring exhibited the most potent antitubercular activity (MIC=1.60 µg/mL) and compounds PZT2, PZT9, PZT11, PZT15, and PZT20 showed similar antitubercular activity against standard pyrazinamide (MIC=3.12 µg/mL) by broth dilution assay. PZT15 and PZT17 with 4"- pyridinyl and 2"-pyrrolyl groups on pyrazoline ring were found to exhibit better anticancer activity against DU-149 prostate cancer cell lines with IC50 values of 2.0±0.2 µg/mL and 6.0±0.3 µg/mL respectively by MTT assay. The preliminary structure-activity relationship has been summarized. The molecular docking studies with crystalline structures of enoyl acyl carrier protein reductase InhA interaction with target protein (2NSD; PDB and 3FNG; PDB) of Mycobacterium tuberculosis H37Rv (MTB) strain have also exhibited good ligand interaction and binding affinity. Ligand interaction and binding affinity were estimated using crystal structures of both types of enoyl acyl carrier protein reductase InhA (3FNG.pdb) and found to be much higher (-16.70 to - 19.20 kcal/mol) compared with pyrazinamide (-10.70 kcal/mol) as a standard target molecule. Whereas the binding affinities of six active compounds with crystal structure of other type of enoyl acyl carrier protein reductase InhA (2NSD.pdb) were much similar and higher (-9.30 to - 11.20 kcal/mole) than pyrazinamide (-11.10 kcal/mole).

    CONCLUSION: These new pyrazolines would be promising potent inhibitors of drug sensitive and drug resistant Mycobacterium tuberculosis strain and potential anticancer agents against prostate cancer and other prototypes of cancers.

    Matched MeSH terms: Antitubercular Agents/chemistry
  17. Bharkavi C, Vivek Kumar S, Ashraf Ali M, Osman H, Muthusubramanian S, Perumal S
    Bioorg Med Chem Lett, 2017 Jul 15;27(14):3071-3075.
    PMID: 28552337 DOI: 10.1016/j.bmcl.2017.05.050
    An efficient one-pot microwave assisted stereoselective synthesis of novel dihydro-2'H-spiro[indene-2,1'-pyrrolo[3,4-c]pyrrole]-tetraone derivatives through three-component 1,3-dipolar cycloaddition of azomethine ylides generated in situ from ninhydrin and sarcosine with a series of 1-aryl-1H-pyrrole-2,5-diones is described. The synthesised compounds were screened for their antimycobacterial and AChE inhibition activities. Compound 4b (IC50 1.30µM) has been found to display twelve fold antimycobacterial activity compared to cycloserine and it is thirty seven times more active than pyrimethamine. Compound 4h displays maximum AchE inhibitory activity with IC50 value of 0.78±0.01µmol/L.
    Matched MeSH terms: Antitubercular Agents/chemistry
  18. Saifullah B, Maitra A, Chrzastek A, Naeemullah B, Fakurazi S, Bhakta S, et al.
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023384 DOI: 10.3390/molecules22101697
    Tuberculosis (TB) is a dreadful bacterial disease, infecting millions of human and cattle every year worldwide. More than 50 years after its discovery, ethambutol continues to be an effective part of the World Health Organization's recommended frontline chemotherapy against TB. However, the lengthy treatment regimens consisting of a cocktail of antibiotics affect patient compliance. There is an urgent need to improve the current therapy so as to reduce treatment duration and dosing frequency. In this study, we have designed a novel anti-TB multifunctional formulation by fabricating graphene oxide with iron oxide magnetite nanoparticles serving as a nano-carrier on to which ethambutol was successfully loaded. The designed nanoformulation was characterised using various analytical techniques. The release of ethambutol from anti-TB multifunctional nanoparticles formulation was found to be sustained over a significantly longer period of time in phosphate buffer saline solution at two physiological pH (7.4 and 4.8). Furthermore, the nano-formulation showed potent anti-tubercular activity while remaining non-toxic to the eukaryotic cells tested. The results of this in vitro evaluation of the newly designed nano-formulation endorse its further development in vivo.
    Matched MeSH terms: Antitubercular Agents/chemistry*
  19. Kar SS, Bhat G V, Rao PP, Shenoy VP, Bairy I, Shenoy GG
    Drug Des Devel Ther, 2016;10:2299-310.
    PMID: 27486307 DOI: 10.2147/DDDT.S104037
    A series of triclosan mimic diphenyl ether derivatives have been synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The binding mode of the compounds at the active site of enoyl-acyl carrier protein reductase of M. tuberculosis has been explored. Among them, compound 10b was found to possess antitubercular activity (minimum inhibitory concentration =12.5 µg/mL) comparable to triclosan. All the synthesized compounds exhibited low levels of cytotoxicity against Vero and HepG2 cell lines, and three compounds 10a, 10b, and 10c had a selectivity index more than 10. Compound 10b was also evaluated for log P, pKa, human liver microsomal stability, and % protein binding, in order to probe its druglikeness. Based on the antitubercular activity and druglikeness profile, it may be concluded that compound 10b could be a lead for future development of antitubercular drugs.
    Matched MeSH terms: Antitubercular Agents/chemistry
  20. Verma R, Boshoff HIM, Arora K, Bairy I, Tiwari M, Varadaraj BG, et al.
    Drug Dev Res, 2020 May;81(3):315-328.
    PMID: 31782209 DOI: 10.1002/ddr.21623
    A new series of novel triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) analogues were designed, synthesized, and screened for their in vitro antimycobacterial and antibacterial activities. Most of the compounds showed significant activity against Mycobacterium tuberculosis H37Rv strain with minimum inhibitory concentration (MIC) values in 20-40 μM range in GAST/Fe medium when compared with triclosan (43 μM) in the first week of assay, and after additional incubation, seven compounds, that is, 2a, 2c, 2g, 2h, 2i, 2j, and 2m, exhibited MIC values at the concentration of 20-40 μM. The compounds also showed more significant activity against Bacillus subtilis and Staphylococcus aureus. The synthesized compounds showed druggable properties, and the predicted ADME (absorption, distribution, metabolism, and excretion) properties were within the acceptable limits. The in silico studies predicted better interactions of compounds with target protein residues and a higher dock score in comparison with triclosan. Molecular dynamics simulation study of the most active compound 2i was performed in order to further explore the stability of the protein-ligand complex and the protein-ligand interaction in detail.
    Matched MeSH terms: Antitubercular Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links