Displaying publications 1 - 20 of 471 in total

Abstract:
Sort:
  1. Jeyamogan S, Khan NA, Siddiqui R
    Asian Pac J Cancer Prev, 2021 Feb 12;22(S1):97-106.
    PMID: 33576218 DOI: 10.31557/APJCP.2021.22.S1.97
    OBJECTIVES: Here we determined antitumour effects of purified compounds such as Valdecoxib, Rofecoxib, L-Methionine and Artocarpin against cancer cell lines.

    METHODS: Using purified compounds, assays were performed to determine their effects against cancer cell lines using growth inhibition assays, cytotoxicity assays, and cell survival assays against HeLa, PC3 and MCF7 cells.

    RESULTS: The results showed that the selected small molecules L-Methionine, Rofecoxib, and Artocarpin suppressed the growth of more than 90% PC3 cells at 40µM. Similarly, Valdecoxib alone and in combination with other molecules exhibited potent growth inhibition and cytotoxicity against cancer cells tested. Peptide from the serum of M. reticulatus, demonstrated selective cytotoxicity against cancer cells without inhibiting the growth of normal cells.

    CONCLUSION: These findings are significant and provide a basis for the rational development of therapeutic anticancer agents, however intensive research is needed to determine in vivo effects of the identified molecules together with their mode of action to realize these expectations. 
    .

    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  2. Rajendran D, Oon CE
    Life Sci, 2024 Dec 01;358:123121.
    PMID: 39389340 DOI: 10.1016/j.lfs.2024.123121
    Colorectal cancer (CRC) remains a leading cause of death globally despite the improvements in cancer treatment. Autophagy is an evolutionarily conserved lysosomal-dependent degradation pathway that is critical in maintaining cellular homeostasis. However, in cancer, autophagy may have conflicting functions in preventing early tumour formation versus the maintenance of advanced-stage tumours. Defective autophagy has a broad and dynamic effect not just on cancer cells, but also on the tumour microenvironment which influences tumour progression and response to treatment. To add to the layer of complexity, somatic mutations in CRC including tumour protein p53 (TP53), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), Kirsten rat sarcoma viral oncogene homolog (KRAS), and phosphatase and tensin homolog (PTEN) can render chemoresistance by promoting a pro-survival advantage through autophagy. Recent studies have also reported autophagy-related cell deaths that are distinct from classical autophagy by employing parts of the autophagic machinery, which impacts strategies for autophagy regulation in cancer therapy. This review discusses the molecular processes of autophagy in the evolution of CRC and its role in the tumour microenvironment, as well as prospective therapeutic methods based on autophagy suppression or promotion. It also highlights clinical trials using autophagy modulators for treating CRC, underscoring the importance of autophagy regulation in CRC therapy.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  3. Wong CC, Periasamy N, Sagineedu SR, Sidik S, Sumon SH, Loadman P, et al.
    Invest New Drugs, 2014 Oct;32(5):806-14.
    PMID: 24875131 DOI: 10.1007/s10637-014-0105-6
    Limited tumor penetrability of anti-cancer drugs is recognized as one of the major factors that lead to poor anti-tumor activity. SRJ09 (3,19-(2-bromobenzylidene) andrographolide) has been identified as a lead anti-cancer agent for colon cancer. Recently, this compound was shown by us to be a mutant K-Ras binder. In this present study, the penetrability of SRJ09 through the DLD-1 colon cancer multicell layer (MCL) was evaluated. The amount of SRJ09 that penetrated through the MCL was quantitated by utilizing high performance liquid chromatography (HPLC). Histopathological staining was used to visualize the morphology of MCL. A chemosensitivity assay was performed to assess the anti-cancer activity of SRJ09 in DLD-1 cells. SRJ09 was able to penetrate through DLD-1 MCL and is inversely proportional with the MCL thickness. The flow rates for SRJ09 through MCL were 0.90 ± 0.20 μM/min/cm(2) and 0.56 ± 0.06 μM/min/cm(2) for days 1 and 5, respectively, which are better than doxorubicin. Histopathological examination revealed that the integrity of the DLD-1 MCL was retained and no visible damage was inflicted on the cell membrane, confirming the penetration of SRJ09 was by diffusion. Short term exposure (1 h) in DLD-1 cells demonstrated SRJ09 had IC50 of 41 μM which was approximately 4-folds lower than andrographolide, the parent compound of SRJ09. In conclusion, SRJ09 successfully penetrated through DLD-1 MCL by diffusion and emerged as a potential candidate to be developed as a clinically viable anti-colon cancer drug.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  4. Liew K, Yong PV, Navaratnam V, Lim YM, Ho AS
    Phytomedicine, 2015 May 15;22(5):517-27.
    PMID: 25981917 DOI: 10.1016/j.phymed.2015.03.007
    We have previously reported the anti-metastatic effects of 2-methoxy-1,4-naphthoquinone (MNQ) against MDA-MB-231 cell line.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  5. Wong FC, Tan ST, Chai TT
    Crit Rev Food Sci Nutr, 2016 Jul 29;56 Suppl 1:S162-70.
    PMID: 26193174 DOI: 10.1080/10408398.2015.1045967
    Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  6. Patmanathan SN, Yap LF, Murray PG, Paterson IC
    J Cell Mol Med, 2015 Oct;19(10):2329-40.
    PMID: 26171944 DOI: 10.1111/jcmm.12635
    Almost all drugs approved for use in humans possess potentially beneficial 'off-target' effects in addition to their principal activity. In some cases this has allowed for the relatively rapid repurposing of drugs for other indications. In this review we focus on the potential for re-purposing FTY720 (also known as fingolimod, Gilenya(™)), an immunomodulatory drug recently approved for the treatment of multiple sclerosis (MS). The therapeutic benefit of FTY720 in MS is largely attributed to the immunosuppressive effects that result from its modulation of sphingosine 1-phosphate receptor signalling. However, this drug has also been shown to inhibit other cancer-associated signal transduction pathways in part because of its structural similarity to sphingosine, and consequently shows efficacy as an anti-cancer agent both in vitro and in vivo. Here, we review the effects of FTY720 on signal transduction pathways and cancer-related cellular processes, and discuss its potential use as an anti-cancer drug.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  7. Bukhari SN, Jantan I, Seyed MA
    Anticancer Agents Med Chem, 2015;15(6):681-93.
    PMID: 25783963
    The evaluation of crude drugs of natural origin as sources of new effective anticancer agents continues to be important due to the lack of effective anticancer drugs currently used in practice which are generally accompanied with adverse effects at different levels of severity. The aim of this concise review is to gather existing literature on anticancer potential of extracts and compounds isolated from Celastraceae species. This review covers six genera (Maytenus, Tripterygium, Hippocratea, Gymnosporia, Celastrus and Austroplenckia) belonging to this family and their 33 isolates. Studies carried out by using different cell lines have shown remarkable indication of anticancer activity, however, only a restricted number of studies have been reported using in vivo tumor models. Some of the compounds, such as triptolide, celastrol and demethylzeylasteral from T. wilfordii, have been extensively studied on their mechanisms of action due to their potent activity on various cancer cell lines. Such promising lead compounds should generate considerable interest among scientists to improve their therapeutic potential with fewer side effects by molecular modification.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  8. El-Seedi HR, Khalifa SAM, Taher EA, Farag MA, Saeed A, Gamal M, et al.
    Pharmacol Res, 2019 03;141:123-175.
    PMID: 30579976 DOI: 10.1016/j.phrs.2018.12.015
    Cardiac glycosides (CGs) are a class of naturally occurring steroid-like compounds, and members of this class have been in clinical use for more than 1500 years. They have been used in folk medicine as arrow poisons, abortifacients, heart tonics, emetics, and diuretics as well as in other applications. The major use of CGs today is based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme, and they are regarded as an effective treatment for congestive heart failure (CHF), cardiac arrhythmia and atrial fibrillation. Furthermore, increasing evidence has indicated the potential cytotoxic effects of CGs against various types of cancer. In this review, we highlight some of the structural features of this class of natural products that are crucial for their efficacy, some methods of isolating these compounds from natural resources, and the structural elucidation tools that have been used. We also describe their physicochemical properties and several modern biotechnological approaches for preparing CGs that do not require plant sources.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  9. Jeyamogan S, Khan NA, Siddiqui R
    Arch Med Res, 2021 02;52(2):131-142.
    PMID: 33423803 DOI: 10.1016/j.arcmed.2020.10.016
    The number of cancer cases worldwide in terms of morbidity and mortality is a serious concern, despite the presence of therapeutic interventions and supportive care. Limitations in the current available diagnosis methods and treatments methods may contribute to the increase in cancer mortality. Theranostics, is a novel approach that has opened avenues for the simultaneous precise diagnosis and treatment for cancer patients. Although still in the early development stage, theranostic agents such as quantum dots, radioisotopes, liposomes and plasmonic nanobubbles can be bound to anticancer drugs, cancer cell markers and imaging agents, with the support of available imaging techniques, provide the potential to facilitate diagnosis, treatment and management of cancer patients. Herein, we discuss the potential benefits of several theranostic tools for the management of cancer. Specifically, quantum dots, radio-labelled isotopes, liposomes and plasmonic nanobubbles coupled with targeting agents and/or anticancer molecules and imaging agents as theranostic agents are deliberated upon in this review. Overall, the use of theranostic agents shows promise in cancer management. Nevertheless, intensive research is required to realize these expectations.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  10. Aldawsari HM, Gorain B, Alhakamy NA, Md S
    J Drug Target, 2020 02;28(2):166-175.
    PMID: 31339380 DOI: 10.1080/1061186X.2019.1648478
    Tumour-associated macrophages (TAMs) represent as much as 50% of the solid mass in different types of human solid tumours including lung, breast, ovarian and pancreatic adenocarcinomas. The tumour microenvironment (TME) plays an important role in the polarisation of macrophages into the M1 phenotype, which is tumour-suppressive, or M2 phenotype, which is tumour promoting. Preclinical and clinical evidences suggest that TAMs are predominantly of the M2 phenotype that supports immune suppression, tumour growth, angiogenesis, metastasis and therapeutic resistance. Hence, significant attention has been focussed on the development of strategies for the modification of TAMs to halt lung cancer progression. The promotion of repolarisation from the M2 to the M1 subtype, or the prevention of M2 polarisation of TAMs in the stromal environment is potential approaches to reduce progression and metastasis of lung cancer. The focus of this article is an introduction to the development and evaluation of therapeutic agents that may halt lung cancer progression via the manipulation of macrophage polarisation. This article will address recent advances in the therapeutic efficacy of nanomedicine exploiting surface functionalisation of nanoparticles and will also consider future perspectives.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  11. Gopinath V, Saravanan S, Al-Maleki AR, Ramesh M, Vadivelu J
    Biomed Pharmacother, 2018 Nov;107:96-108.
    PMID: 30086465 DOI: 10.1016/j.biopha.2018.07.136
    Natural polysaccharides are renewable with a high degree of biocompatibility, biodegradability, and ability to mimic the natural extracellular matrix (ECM) microenvironment. Comprehensive investigations of polysaccharides are essential for our fundamental understanding of exploiting its potential as bio-composite, nano-conjugate and in pharmaceutical sectors. Polysaccharides are considered to be superior to other polymers, for its ease in tailoring, bio-compatibility, bio-activity, homogeneity and bio-adhesive properties. The main focus of this review is to spotlight the new advancements and challenges concerned with surface modification, binding domains, biological interaction with the conjugate including stability, polydispersity, and biodegradability. In this review, we have limited our survey to three essential polysaccharides including cellulose, starch, and glycogen that are sourced from plants, microbes, and animals respectively are reviewed. We also present the polysaccharides which have been extensively modified with the various types of conjugates for combating last-ditch pharmaceutical challenges.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  12. Barathan M, Vellasamy KM, Mariappan V, Venkatraman G, Vadivelu J
    Appl Biochem Biotechnol, 2024 Jul;196(7):4644-4660.
    PMID: 37773580 DOI: 10.1007/s12010-023-04734-0
    Almost 70% of clinically used antineoplastic drugs are originated from natural products such as plants, marine organism, and microorganisms and some of them are also structurally modified natural products. The naturally occurring drugs may specifically act as inducers of selective cytotoxicity, anti-metastatic, anti-mutagenic, anti-angiogenesis, antioxidant accelerators, apoptosis inducers, autophagy inducers, and cell cycle inhibitors in cancer therapy. Precisely, several reports have demonstrated the involvement of naturally occurring anti-breast cancer drugs in regulating the expression of oncogenic and tumor suppressors associated with carcinogen metabolism and signaling pathways. Anticancer therapies based on nanotechnology have the potential to improve patient outcomes through targeted therapy, improved drug delivery, and combination therapies. This paper has reviewed the current treatment for breast cancer and the potential disadvantages of those therapies, besides the various mechanism used by naturally occurring phytochemicals to induce apoptosis in different types of breast cancer. Along with this, the contribution of nanotechnology in improving the effectiveness of anticancer drugs was also reviewed. With the development of sciences and technologies, phytochemicals derived from natural products are continuously discovered; however, the search for novel natural products as chemoprevention drugs is still ongoing, especially for the advanced stage of breast cancer. Continued research and development in this field hold great promise for advancing cancer care and improving patient outcomes.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  13. Ganesan T, Sinniah A, Ramasamy TS, Alshawsh MA
    Biochem Biophys Res Commun, 2024 Sep 17;725:150202.
    PMID: 38885563 DOI: 10.1016/j.bbrc.2024.150202
    The annexin superfamily protein, Annexin A1, initially recognized for its glucocorticoid-induced phospholipase A2-inhibitory activities, has emerged as a crucial player in diverse cellular processes, including cancer. This review explores the multifaceted roles of Anx-A1 in cancer chemoresistance, an area largely unexplored. Anx-A1's involvement in anti-inflammatory processes, its complex phosphorylation patterns, and its context-dependent switch from anti-to pro-inflammatory in cancer highlights its intricate regulatory mechanisms. Recent studies highlight Anx-A1's paradoxical roles in different cancers, exhibiting both up- and down-regulation in a tissue-specific manner, impacting different hallmark features of cancer. Mechanistically, Anx-A1 modulates drug efflux transporters, influences cancer stem cell populations, DNA damages and participates in epithelial-mesenchymal transition. This review aims to explore Anx-A1's role in chemoresistance-associated pathways across various cancers, elucidating its impact on survival signaling cascades including PI3K/AKT, MAPK/ERK, PKC/JNK/P-gp pathways and NFκ-B signalling. This review also reveals the clinical implications of Anx-A1 dysregulation in treatment response, its potential as a prognostic biomarker, and therapeutic targeting strategies, including the promising Anx-A1 N-terminal mimetic peptide Ac2-26. Understanding Anx-A1's intricate involvement in chemoresistance offers exciting prospects for refining cancer therapies and improving treatment outcomes.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  14. Chan SW, Mahmoud VL, Wang X, Teoh ML, Loh KM, Ng CH, et al.
    PLoS One, 2024;19(11):e0310770.
    PMID: 39509364 DOI: 10.1371/journal.pone.0310770
    Agarwood essential oil (AEO) has gained attention from healthcare industries due to its numerous pharmacological properties. However, a comprehensive understanding of the chemical composition and its cytotoxic property is lacking. The objective of this study was to investigate the chemical profile as well as the cytotoxic concentration range of AEO derived from Aquilaria sinensis agarwood. Gas chromatography-mass spectrometry (GC-MS) was employed to identify the AEO components. Results showed that sesquiterpenes and sesquiterpenoids constitute 95.85% of the AEO. Among the major compounds identified are allo-aromadendrene (13.04%), dihydro-eudesmol (8.81%), α-eudesmol (8.48%), bulnesol (7.63%), τ-cadinol (4.95%), dehydrofukinone (3.83%), valerenol (3.54%), cis-nerolidol (2.75%), agarospirol (2.72%), dehydrojinkoh-eremol (2.53%), selina-3,11-dien-9-al (2.36%), guaiol (2.12%) and caryophyllene oxide (2.0%). The presence of volatile quality marker compounds such as 10-epi-ϒ-eudesmol, aromadendrane, β-agarofuran, α-agarofuran, γ-eudesmol, agarospirol and guaiol, with no contaminants detected, indicates that the extracted AEO is of high purity. Interestingly, the AEO displayed moderate to high toxicity in brine shrimp lethality test (BLST). All studied tumor cell lines (MDA-MB-231, HepG2, B16F10) exhibited varying degrees of sensitivity to AEO, which resulted in time and dose-dependent reduction of cell proliferation. Moreover, flow cytometry analysis revealed that AEO could induce apoptosis in treated HepG2 cells. Our findings showed that AEO contains bioactive components that may be exploited in future studies for the development of anti-cancer therapeutics.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  15. Amani AM, Tayebi L, Vafa E, Bazargan-Lari R, Abbasi M, Vaez A, et al.
    Int J Pharm, 2024 Dec 25;667(Pt A):124847.
    PMID: 39486491 DOI: 10.1016/j.ijpharm.2024.124847
    Cancer continues to pose a formidable threat, claiming millions of lives annually. A beacon of hope in this battle lies in the realm of bioactive glasses, which have undergone a remarkable evolution over the past five decades. Among these, mesoporous bioactive glasses (MBGs) emerge as a dynamic subset endowed with customizable attributes such as high surface area and porosity. While holding immense promise for cancer care, the full clinical potential of MBGs remains largely unexplored. This review delves into the cutting-edge advancements in MBG technology, illuminating their pivotal role in cancer management - spanning from early detection to targeted therapeutic interventions like photothermal and photodynamic treatments. Furthermore, the molecular mechanisms underpinning MBGs' anticancer properties are elucidated, alongside an exploration of existing limitations in their application. Through this comprehensive synthesis, the significance of MBGs in revolutionizing cancer therapy is underscored, underscoring the urgent need for continued research to unlock their full potential in reshaping the landscape of cancer care.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  16. Jadhav P, Bhuyar P, Misnon II, Rahim MHA, Roslan R
    Int J Biol Macromol, 2024 Sep;276(Pt 2):134061.
    PMID: 39043289 DOI: 10.1016/j.ijbiomac.2024.134061
    The conversion of lignin into bioactive compounds through selective organic synthesis methods represents a promising frontier in the pursuit of sustainable raw materials and green chemistry. This review explores the versatility of lignin-derived bioactive compounds, ranging from their application in drug discovery to their role in the development of biodegradable materials. Despite notable advancements, the synthesis routes and yields of highly bioactive molecules from lignin still require further exploration and improvement. This review provides an in-depth examination of the progress made in understanding the complex structure of lignin and developing innovative approaches to exploit its potential. Specifically, the types of lignins covered include softwood Kraft lignin, hardwood organosolv lignin, and soda lignin. This work is divided into three parts: first, the transformation of lignin into bioactive molecules with chemically active centres and functionalised hydroxyl groups through depolymerisation; second, kinetic modelling techniques essential for understanding the chemical kinetics of lignin and enabling significant scaling up in the conversion of organic molecules; third, efficient catalytic pathways for synthesising molecules with anticancer and antibacterial properties. In conclusion, this comprehensive review spurs further investigations into lignin-derived bioactive compounds, their applications, and the advancement of sustainable processes.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  17. Ahmad S, Bano N, Khanna K, Gupta D, Raza K
    Int J Biol Macromol, 2024 Sep;276(Pt 1):133872.
    PMID: 39019378 DOI: 10.1016/j.ijbiomac.2024.133872
    Lung Cancer (LC) is among the most death-causing cancers, has caused the most destruction and is a gender-neutral cancer, and WHO has kept this cancer on its priority list to find the cure. We have used high-throughput virtual screening, standard precision docking, and extra precise docking for extensive screening of Drug Bank compounds, and the uniqueness of this study is that it considers multiple protein targets of prognosis and metastasis of LC. The docking and MM\GBSA calculation scores for the Tiaprofenic acid (DB01600) against all ten proteins range from -8.422 to -5.727 kcal/mol and - 47.43 to -25.72 kcal/mol, respectively. Also, molecular fingerprinting helped us to understand the interaction pattern of Tiaprofenic acid among all the proteins. Further, we extended our analysis to the molecular dynamic simulation in a neutralised SPC water medium for 100 ns. We analysed the root mean square deviation, fluctuations, and simulative interactions among the protein, ligand, water molecules, and protein-ligand complexes. Most complexes have shown a deviation of <2 Å as cumulative understanding. Also, the fluctuations were lesser, and only a few residues showed the fluctuation with a huge web of interaction between the protein and ligand, providing an edge that supports that the protein and ligand complexes were stable. In the MTT-based Cell Viability Assay, Tiaprofenic Acid exhibited concentration-dependent anti-cancer efficacy against A549 lung cancer cells, significantly reducing viability at 100 μg/mL. These findings highlight its potential as a therapeutic candidate, urging further exploration into the underlying molecular mechanisms for lung cancer treatment.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  18. Jaganathan SK, Mondhe D, Wani ZA, Supriyanto E
    ScientificWorldJournal, 2014;2014:912051.
    PMID: 25506620 DOI: 10.1155/2014/912051
    People affected with leukemia are on the rise and several strategies were employed to thwart this deadly disease. Recent decade of research focuses on phenolic constituents as a tool for combating various inflammatory, cancer, and cardiac diseases. Our research showed honey and its phenolic constituents as crusaders against cancer. In this work, we explored the antileukemic activity of selected honey and one of its phenolic constituent eugenol against L1210 leukemia animal model. Results of this experiment showed that the selected honey samples as well as eugenol after intraperitoneal injection could not increase the median survival time (MST) of animals. Further, there was only slight marginal increase in the %T/C values of honey and eugenol treated groups. The number of phenolics present in the honey may not be a prime factor to promote antileukemic effect since there was no difference in the MST of two different honeys tested. This study limits the use of selected honey and eugenol against leukemia animal model.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  19. Almansour AI, Kumar RS, Beevi F, Shirazi AN, Osman H, Ismail R, et al.
    Molecules, 2014 Jul 10;19(7):10033-55.
    PMID: 25014532 DOI: 10.3390/molecules190710033
    A number of novel spiro-pyrrolidines/pyrrolizines derivatives were synthesized through [3+2]-cycloaddition of azomethine ylides with 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones 2a-n. Azomethine ylides were generated in situ from the reaction of 1H-indole-2,3-dione (isatin, 3) with N-methylglycine (sarcosine), phenylglycine, or proline. All compounds (50 μM) were evaluated for their antiproliferative activity against human breast carcinoma (MDA-MB-231), leukemia lymphoblastic (CCRF-CEM), and ovarian carcinoma (SK-OV-3) cells. N-α-Phenyl substituted spiro-pyrrolidine derivatives (5a-n) showed higher antiproliferative activity in MDA-MB-231 than other cancer cell lines. Among spiro-pyrrolizines 6a-n, a number of derivatives including 6a-c and 6i-m showed a comparable activity with doxorubicin in all three cell lines. Among all compounds in three classes, 6a, 6b, and 6m, were found to be the most potent derivatives showing 64%, 87%, and 74% antiproliferative activity in MDA-MB-231, SK-OV-3, and CCRF-CEM cells, respectively. Compound 6b showed an IC50 value of 3.6 mM in CCRF-CEM cells. These data suggest the potential antiproliferative activity of spiro-pyrrolidines/pyrrolizines.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  20. Fouz N, Amid A, Hashim YZ
    Appl Biochem Biotechnol, 2014 Aug;173(7):1618-39.
    PMID: 24928548 DOI: 10.1007/s12010-014-0947-6
    The contributing molecular pathways underlying the pathogenesis of breast cancer need to be better characterized. The principle of our study was to better understand the genetic mechanism of oncogenesis for human breast cancer and to discover new possible tumor markers for use in clinical practice. We used complimentary DNA (cDNA) microarrays to compare gene expression profiles of treated Michigan Cancer Foundation-7 (MCF-7) with recombinant bromelain and untreated MCF-7. SpringGene analysis was carried out of differential expression followed by Ingenuity Pathway Analysis (IPA), to understand the underlying consequence in developing disease and disorders. We identified 1,102 known genes differentially expressed to a significant degree (p<0.001) changed between the treatment. Within this gene set, 20 genes were significantly changed between treated cells and the control cells with cutoff fold change of more than 1.5. These genes are RNA-binding motif, single-stranded interacting protein 1 (RBMS1), ribosomal protein L29 (RPL29), glutathione S-transferase mu 2 (GSTM2), C15orf32, Akt3, B cell translocation gene 1 (BTG1), C6orf62, C7orf60, kinesin-associated protein 3 (KIFAP3), FBXO11, AT-rich interactive domain 4A (ARID4A), COPS2, TBPL1|SLC2A12, TMEM59, SNORD46, glioma tumor suppressor candidate region gene 2 (GLTSCR2), and LRRFIP. Our observation on gene expression indicated that recombinant bromelain produces a unique signature affecting different pathways, specific for each congener. The microarray results give a molecular mechanistic insight and functional effects, following recombinant bromelain treatment. The extent of changes in genes is related to and involved significantly in gap junction signaling, amyloid processing, cell cycle regulation by BTG family proteins, and breast cancer regulation by stathmin1 that play major roles.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links