Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Chuah LO, Foo HL, Loh TC, Mohammed Alitheen NB, Yeap SK, Abdul Mutalib NE, et al.
    BMC Complement Altern Med, 2019 Jun 03;19(1):114.
    PMID: 31159791 DOI: 10.1186/s12906-019-2528-2
    BACKGROUND: Lactobacillus plantarum, a major species of Lactic Acid Bacteria (LAB), are capable of producing postbiotic metabolites (PM) with prominent probiotic effects that have been documented extensively for rats, poultry and pigs. Despite the emerging evidence of anticancer properties of LAB, very limited information is available on cytotoxic and antiproliferative activity of PM produced by L. plantarum. Therefore, the cytotoxicity of PM produced by six strains of L. plantarum on various cancer and normal cells are yet to be evaluated.

    METHODS: Postbiotic metabolites (PM) produced by six strains of L. plantarum were determined for their antiproliferative and cytotoxic effects on normal human primary cells, breast, colorectal, cervical, liver and leukemia cancer cell lines via MTT assay, trypan blue exclusion method and BrdU assay. The toxicity of PM was determined for human and various animal red blood cells via haemolytic assay. The cytotoxicity mode was subsequently determined for selected UL4 PM on MCF-7 cells due to its pronounced cytotoxic effect by fluorescent microscopic observation using AO/PI dye reagents and flow cytometric analyses.

    RESULTS: UL4 PM exhibited the lowest IC50 value on MCF-7, RG14 PM on HT29 and RG11 and RI11 PM on HL60 cell lines, respectively from MTT assay. Moreover, all tested PM did not cause haemolysis of human, dog, rabbit and chicken red blood cells and demonstrated no cytotoxicity on normal breast MCF-10A cells and primary cultured cells including human peripheral blood mononuclear cells, mice splenocytes and thymocytes. Antiproliferation of MCF-7 and HT-29 cells was potently induced by UL4 and RG 14 PM respectively after 72 h of incubation at the concentration of 30% (v/v). Fluorescent microscopic observation and flow cytometric analyses showed that the pronounced cytotoxic effect of UL4 PM on MCF-7 cells was mediated through apoptosis.

    CONCLUSION: In conclusion, PM produced by the six strains of L. plantarum exhibited selective cytotoxic via antiproliferative effect and induction of apoptosis against malignant cancer cells in a strain-specific and cancer cell type-specific manner whilst sparing the normal cells. This reveals the vast potentials of PM from L. plantarum as functional supplement and as an adjunctive treatment for cancer.

    Matched MeSH terms: Antineoplastic Agents/metabolism*
  2. Ragab TIM, Malek RA, Elsehemy IA, Farag MMS, Salama BM, Abd El-Baseer MA, et al.
    J Biosci Bioeng, 2019 Jun;127(6):655-662.
    PMID: 30795878 DOI: 10.1016/j.jbiosc.2018.09.008
    This study focused on kinetics of levan yield by Bacillus subtilis M, in a 150 L stirred tank bioreactor under controlled pH conditions. The optimized production medium was composed of (g/L): commercial sucrose 100.0, yeast extract 2.0, K2HPO4 3.0 and MgSO4⋅7H2O 0.2; an increase in both carbohydrates consumption and cell growth depended on increasing the size of the stirred tank bioreactor from 16 L to 150 L. The highest levansucrase production (63.4 U/mL) and levan yield of 47 g/L was obtained after 24 h. Also, the specific levan yield (Yp/x) which reflects the cell productivity increased with the size increase of the stirred tank bioreactor and reached its maximum value of about 29.4 g/g cells. These results suggested that B. subtilis M could play an important role in levan yield on a large scale in the future. Chemical modifications of B. subtilis M crude levan (CL) into sulfated (SL), phosphorylated (PL), and carboxymethylated levans (CML) were done. The difference in CL structure and its derivatives was detected by FT-IR transmission spectrum. The cytotoxicity of CL and its derivatives were evaluated by HepGII, Mcf-7 and CaCo-2. In general most tested levans forms had no significant cytotoxicity effect. In fact, the carboxymethylated and phosphrylated forms had a lower anti-cancer effect than CL. On the other hand, SL had the highest cytotoxicity showing SL had a significant anti-cancer effect. The results of cytotoxicity and cell viability were statistically analyzed using three-way ANOVA.
    Matched MeSH terms: Antineoplastic Agents/metabolism
  3. Ahmad FB, Ghaffari Moghaddam M, Basri M, Abdul Rahman MB
    Biosci Biotechnol Biochem, 2010;74(5):1025-9.
    PMID: 20460723
    An easy and efficient strategy to prepare betulinic acid esters with various anhydrides was used by the enzymatic synthesis method. It involves lipase-catalyzed acylation of betulinic acid with anhydrides as acylating agents in organic solvent. Lipase from Candida antarctica immobilized on an acrylic resin (Novozym 435) was employed as a biocatalyst. Several 3-O-acyl-betulinic acid derivatives were successfully obtained by this procedure. The anticancer activity of betulinic acid and its 3-O-acylated derivatives were then evaluated in vitro against human lung carcinoma (A549) and human ovarian (CAOV3) cancer cell lines. 3-O-glutaryl-betulinic acid, 3-O-acetyl-betulinic acid, and 3-O-succinyl-betulinic acid showed IC(50)<10 microg/ml against A549 cancer cell line tested and showed better cytotoxicity than betulinic acid. In an ovarian cancer cell line, all betulinic acid derivatives prepared showed weaker cytotoxicity than betulinic acid.
    Matched MeSH terms: Antineoplastic Agents/metabolism
  4. Tayyab S, Izzudin MM, Kabir MZ, Feroz SR, Tee WV, Mohamad SB, et al.
    J. Photochem. Photobiol. B, Biol., 2016 Sep;162:386-94.
    PMID: 27424099 DOI: 10.1016/j.jphotobiol.2016.06.049
    Binding characteristics of a promising anticancer drug, axitinib (AXT) to human serum albumin (HSA), the major transport protein in human blood circulation, were studied using fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking analysis. A gradual decrease in the Stern-Volmer quenching constant with increasing temperature revealed the static mode of the protein fluorescence quenching upon AXT addition, thus confirmed AXT-HSA complex formation. This was also confirmed from alteration in the UV-vis spectrum of HSA upon AXT addition. Fluorescence quenching titration results demonstrated moderately strong binding affinity between AXT and HSA based on the binding constant value (1.08±0.06×10(5)M(-1)), obtained in 10mM sodium phosphate buffer, pH7.4 at 25°C. The sign and magnitude of the enthalpy change (∆H=-8.38kJmol(-1)) as well as the entropy change (∆S=+68.21Jmol(-1)K(-1)) clearly suggested involvement of both hydrophobic interactions and hydrogen bonding in AXT-HSA complex formation. These results were well supported by molecular docking results. Three-dimensional fluorescence spectral results indicated significant microenvironmental changes around Trp and Tyr residues of HSA upon complexation with AXT. AXT binding to the protein produced significant alterations in both secondary and tertiary structures of HSA, as revealed from the far-UV and the near-UV CD spectral results. Competitive drug displacement results obtained with phenylbutazone (site I marker), ketoprofen (site II marker) and hemin (site III marker) along with molecular docking results suggested Sudlow's site I, located in subdomain IIA of HSA, as the preferred binding site of AXT.
    Matched MeSH terms: Antineoplastic Agents/metabolism*
  5. Kabir MZ, Tee WV, Mohamad SB, Alias Z, Tayyab S
    Spectrochim Acta A Mol Biomol Spectrosc, 2017 Jun 15;181:254-263.
    PMID: 28376387 DOI: 10.1016/j.saa.2017.03.059
    Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04×104M-1), obtained at 298K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.
    Matched MeSH terms: Antineoplastic Agents/metabolism*
  6. Jesuraj SAV, Sarker MMR, Ming LC, Praya SMJ, Ravikumar M, Wui WT
    PLoS One, 2017;12(8):e0181745.
    PMID: 28813436 DOI: 10.1371/journal.pone.0181745
    Microbial anti-cancer enzymes have been proven to be effective and economical agents for cancer treatment. Aeromonas veronii has been identified as a microorganism with the potential to produce L-glutaminase, an anticancer agent effective against acute lymphocytic leukaemia. In this study, a selective medium of Aeromonas veronii was used to culture the microorganism. Strain improvement was done by adaptive and induced mutational techniques. A selective minimal agar media was incorporated for the growth of the strain which further supports adaptive mutation. Strains were also UV-irradiated and successively treated with N-methyl-N'-nitro-N-nitrosoguanidine to find a resilient strain capable of producing L-glutaminase efficiently. The Plackett-Burman design and central composite designs were used to screen and optimize additional carbon and nitrogen sources. Adaptive mutation resulted in promising yield improvements compared to native strain (P<0.001). The mean yield of 30 treated colonies from the induced mutation was significantly increased compared to the non-induced strain (P< 0.001). The economically feasible statistical designs were found to reinforce each other in order to maximize the yield of the enzyme. The interactions of nutrient factors were understood from the 3D response surface plots. The model was found to be a perfect fit in terms of maximizing enzyme yield, with the productivity improving at every stage to a fourfold output of enzyme (591.11 ±7.97 IU/mL) compared to the native strain (135±3.51 IU/mL).
    Matched MeSH terms: Antineoplastic Agents/metabolism*
  7. Pan Y, Ong EC
    Xenobiotica, 2017 Oct;47(10):923-932.
    PMID: 27690753 DOI: 10.1080/00498254.2016.1244370
    1. This article aims to evaluate the potentials of using cytochrome P450 2W1 (CYP2W1) as a biomarker and a drug target of cancer because of its characteristic cancer-specific expression. 2. Discrepant findings comparing the expression levels of CYP2W1 in cancer and non-cancer samples were reported. In general, the expression followed a developmental pattern. The demethylation status of CpG island and the expression levels of CYP2W1 genes was positively correlated. 3. CYP2W1 was able to activate several procarcinogens, anticancer pro-drugs and to metabolise many endogenous substances including fatty acids and lysophospholipids. 4. CYP2W1 expression level was suggested to serve as an independent prognostic biomarker in colorectal cancer and hepatocellular carcinoma. The correlation of genetic polymorphisms of CYP2W1 and cancer risk was uncertain. 5. Further characterisation of CYP2W1 structure is suggested to link to its functions. More studies are warranted to reveal the true status and the regulation of CYP2W1 expression across normal and cancer tissues. Catalytic activity of CYP2W1 should be tested on a wider spectrum of endogenous and exogenous substances before its use as the drug target. Larger size of clinical samples can be included to verify the potential of CYP2W1 as the prognostic or cancer risk biomarker.
    Matched MeSH terms: Antineoplastic Agents/metabolism*
  8. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Yari Khosroushahi A
    J Appl Microbiol, 2014 Aug;117(2):498-508.
    PMID: 24775273 DOI: 10.1111/jam.12531
    This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract.
    Matched MeSH terms: Antineoplastic Agents/metabolism
  9. Kabir MZ, Mukarram AK, Mohamad SB, Alias Z, Tayyab S
    J. Photochem. Photobiol. B, Biol., 2016 Jul;160:229-39.
    PMID: 27128364 DOI: 10.1016/j.jphotobiol.2016.04.005
    Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions.
    Matched MeSH terms: Antineoplastic Agents/metabolism*
  10. Yip CH, Yarkoni O, Ajioka J, Wan KL, Nathan S
    Appl Microbiol Biotechnol, 2019 Feb;103(4):1667-1680.
    PMID: 30637495 DOI: 10.1007/s00253-018-09611-z
    Prodigiosin, a red linear tripyrrole pigment and a member of the prodiginine family, is normally secreted by the human pathogen Serratia marcescens as a secondary metabolite. Studies on prodigiosin have received renewed attention as a result of reported immunosuppressive, antimicrobial and anticancer properties. High-level synthesis of prodigiosin and the bioengineering of strains to synthesise useful prodiginine derivatives have also been a subject of investigation. To exploit the potential use of prodigiosin as a clinical drug targeting bacteria or as a dye for textiles, high-level synthesis of prodigiosin is a prerequisite. This review presents an overview on the biosynthesis of prodigiosin from its natural host Serratia marcescens and through recombinant approaches as well as highlighting the beneficial properties of prodigiosin. We also discuss the prospect of adopting a synthetic biology approach for safe and cost-effective production of prodigiosin in a more industrially compliant surrogate host.
    Matched MeSH terms: Antineoplastic Agents/metabolism*
  11. Soopramanien M, Khan NA, Sagathevan K, Siddiqui R
    Int Microbiol, 2021 Jan;24(1):47-56.
    PMID: 32737845 DOI: 10.1007/s10123-020-00139-9
    Pollution, unhygienic conditions and organic waste are detrimental to human health. On the contrary, animals living in polluted environments, feeding on organic waste and exposed to noxious agents such as heavy metals must possess remarkable properties against contracting diseases. Species such as cockroaches and water monitor lizards thrive in unhygienic conditions and feed on decaying matter. Here, we investigated the antitumour properties of metabolites produced by gut bacteria isolated from Varanus salvator (Asian water monitor lizard). An adult water monitor lizard and a juvenile water monitor lizard were acquired, and dissected. Their aerobic gut bacteria were isolated and identificated through 16S rDNA sequencing. Next, bacterial conditioned media (CM) were prepared and utilised for subsequent assays. Growth inhibition, MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay, cytotoxicity and cell survival assays were accomplished against a panel of cancer cells as well as a normal cell line. Furthermore, liquid chromatography-mass spectrometry (LC-MS) was employed to identify potential antitumour molecules. A plethora of bacteria were isolated from the gut of juvenile and adult V. salvator respectively. Moreover, CM prepared from selected bacteria exhibited antitumour activity. Of note, LC-MS results indicated the presence of several molecules with reported antitumour activity, namely, 3-butylidene-7-hydroxyphthalide, C75, enigmol, estrone 16-oxime, proglumide and S-allyl-L-cysteine. Furthermore, 356 potentially novel molecules from juvenile V. salvator and 184 from adult V. salvator were depicted. Thus, the gut microbiota of V. salvator might be considered as a great niche of antitumour molecules; however, further in vitro and in vivo studies are needed to assess the antitumour properties of these molecules.
    Matched MeSH terms: Antineoplastic Agents/metabolism*
  12. Sannasimuthu A, Ramani M, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, et al.
    Cell Biol Int, 2020 Nov;44(11):2231-2242.
    PMID: 32716104 DOI: 10.1002/cbin.11431
    This study demonstrates both the antioxidant and anticancer potential of the novel short molecule YT12 derived from peroxiredoxin (Prx) of spirulina, Arthrospira platensis (Ap). ApPrx showed significant reduction in reactive oxygen species (ROS) against hydrogen peroxide (H2 O2 ) stress. The complementary DNA sequence of ApPrx contained 706 nucleotides and its coding region possessed 546 nucleotides between position 115 and 660. Real-time quantitative reverse transcription polymerase chain reaction analysis confirmed the messenger RNA expression of ApPrx due to H2 O2 exposure in spirulina cells at regular intervals, in which the highest expression was noticed on Day 20. Cytotoxicity assay was performed using human peripheral blood mononuclear cells, and revealed that at 10 μM, the YT12 did not exhibit any notable toxicity. Furthermore, ROS scavenging activity of YT12 was performed using DCF-DA assay, in which YT12 scavenged a significant amount of ROS at 25 μM in H2 O2 -treated blood leukocytes. The intracellular ROS in human colon adenocarcinoma cells (HT-29) was regulated by oxidative stress, where the YT12 scavenges ROS in HT-29 cells at 12.5 μM. Findings show that YT12 peptide has anticancer activity, when treated against HT-29 cells. Through the MTT assay, YT12 showed vital cytotoxicity against HT-29 cells. These finding suggested that YT12 is a potent antioxidant molecule which defends ROS against oxidative stress and plays a role in redox balance.
    Matched MeSH terms: Antineoplastic Agents/metabolism
  13. Kiew SF, Ho YT, Kiew LV, Kah JCY, Lee HB, Imae T, et al.
    Int J Pharm, 2017 Dec 20;534(1-2):297-307.
    PMID: 29080707 DOI: 10.1016/j.ijpharm.2017.10.045
    We synthesized a dextrin (DEX)-conjugated graphene oxide (GO) nanocarrier (GO100-DEX) as a potential drug delivery system to respond to a tumor-associated stimulus, α-amylase, that has high permeability through the fenestrated endothelial barrier to the tumor site. At acidic pH and in the presence of α-amylase to simulate tumor conditions, GO100-DEX released a 1.5-fold higher amount of doxorubicin (DOX) than of GO100. Under the same conditions, the cytotoxic effects of GO100-DEX/DOX were 2-fold greater than those of free DOX and 2.9-fold greater than those of GO100/DOX. Employing an in vitro biomimetic microfluidic blood vessel model lined with human umbilical vein endothelial cells, we evaluated the tumor vasculature endothelial permeation of GO100-DEX and GO100 using dextrans of 10 and 70kDa for comparison and as standards to validate the microfluidic blood vessel model. The results showed that the permeabilities of GO100-DEX and GO100 were 4.3- and 4.9-fold greater than that of 70kDa dextran and 2.7- and 3.1-fold higher than that of 10kDa dextran, thus demonstrating the good permeability of the GO-based nanocarrier through the fenestrated endothelial barrier.
    Matched MeSH terms: Antineoplastic Agents/metabolism
  14. AlMatar M, Eldeeb M, Makky EA, Köksal F, Var I, Kayar B
    Curr Microbiol, 2017 Jan;74(1):132-144.
    PMID: 27785553 DOI: 10.1007/s00284-016-1152-3
    Microbial-derived natural products have functional and structural diversity and complexity. For several decades, they have provided the basic foundation for most drugs available to modern medicine. Microbial-derived natural products have wide-ranging applications, especially as chemotherapeutics for various diseases and disorders. By exploring distinct microorganisms in different environments, small novel bioactive molecules with unique functionalities and biological or biomedical significance can be identified. Aquatic environments, such as oceans or seas, are considered to be sources of abundant novel bioactive compounds. Studies on marine microorganisms have revealed that several bioactive compounds extracted from marine algae and invertebrates are eventually generated by their associated bacteria. These findings have prompted intense research interest in discovering novel compounds from marine microorganisms. Natural products derived from Dermacoccus exhibit antibacterial, antitumor, antifungal, antioxidant, antiviral, antiparasitic, and eventually immunosuppressive bioactivities. In this review, we discussed the diversity of secondary metabolites generated by genus Dermacoccus with respect to their chemical structure, biological activity, and origin. This brief review highlights and showcases the pivotal importance of Dermacoccus-derived natural products and sheds light on the potential venues of discovery of new bioactive compounds from marine microorganisms.
    Matched MeSH terms: Antineoplastic Agents/metabolism
  15. Majeed S, Abdullah MS, Dash GK, Ansari MT, Nanda A
    Chin J Nat Med, 2016 Aug;14(8):615-20.
    PMID: 27608951 DOI: 10.1016/S1875-5364(16)30072-3
    Biosynthesis of silver and other metallic nanoparticles is one of the emerging research area in the field of science and technology due to their potentiality, especially in the field of nano-biotechnology and biomedical sciences in order to develop nanomedicine. In our present study, Penicillium decumbens (MTCC-2494) was brought from Institute of Microbial Technology (IMTECH) Chandigarh and employed for extracellular biological synthesis of silver nanoparticles. Ag-NPs formation was appeared with a dark brown color inside the conical flask. Characterization of Ag-NPs were done by UV-Spectrophotometric analysis which showed absorption peak at 430 nm determines the presence of nanoparticles, Fourier transform infrared (FT-IR) spectroscopic analysis, showed amines and amides are the possible proteins involved in the stabilization of nanoparticles as capping agent. Atomic force Microscopy (AFM) confirmed the particle are spherical, size was around 30 to 60 nm and also the roughness of nanoparticles. Field emission scanning electron microscopy (FE-SEM) showed the topology of the nanoparticles and were spherical in shape. The biosynthesis process was found fast, ecofriendly and cost effective. Nano-silver particle was found to have a broad antimicrobial activity and also it showed good enhancement of antimicrobial activity of Carbenicillin, Piperacillin, Cefixime, Amoxicillin, Ofloxacin and Sparfloxacin in a synergistic mode. These Ag-NPs showed good anti-cancer activity at 80 μg·mL(-1)upon 24 hours of incubation and toxicity increases upon 48 hours of incubation against A-549 human lung cancer cell line and the synergistic formulation of the antibiotic with the synthesized nanoparticles was found more effective against the pathogenic bacteria studied.
    Matched MeSH terms: Antineoplastic Agents/metabolism*
  16. Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, et al.
    Arch Pharm Res, 2018 Feb;41(2):111-129.
    PMID: 29214601 DOI: 10.1007/s12272-017-0995-x
    The development of novel drug delivery systems based on well-defined polymer therapeutics has led to significant improvements in the treatment of multiple disorders. Advances in material chemistry, nanotechnology, and nanomedicine have revolutionized the practices of drug delivery. Stimulus-responsive material-based nanosized drug delivery systems have remarkable properties that allow them to circumvent biological barriers and achieve targeted intracellular drug delivery. Specifically, the development of novel nanocarrier-based therapeutics is the need of the hour in managing complex diseases. In this review, we have briefly described the fundamentals of drug targeting to diseased tissues, physiological barriers in the human body, and the mechanisms/modes of drug-loaded carrier systems. To that end, this review serves as a comprehensive overview of the recent developments in stimulus-responsive drug delivery systems, with focus on their potential applications and impact on the future of drug delivery.
    Matched MeSH terms: Antineoplastic Agents/metabolism
  17. Khan I, Kumar H, Mishra G, Gothwal A, Kesharwani P, Gupta U
    Curr Pharm Des, 2017;23(35):5315-5326.
    PMID: 28875848 DOI: 10.2174/1381612823666170829164828
    BACKGROUND: Delivery of chemotherapeutic drugs for the diagnosis and treatment of cancer is becoming advanced day by day. However, the challenge of the effective delivery system still does exist. In various types of cancers, breast cancer is the most commonly diagnosed cancer among women. Breast cancer is a combination of different diseases. It cannot be considered as only one entity because there are many specific patient factors, which are involved in the development of this disease. Nanotechnology has opened a new area in the effective treatment of breast cancer due to the several benefits offered by this technology.

    METHODS: Polymeric nanocarriers are among one of the effective delivery systems, which has given promising results in the treatment of breast cancers. Nanocarriers does exert their anticancer effect either through active or passive targeting mode.

    RESULTS: The use of nanocarriers has been resolute about the adverse effects of chemotherapeutic drugs such as poor solubility and less penetrability in tumor cells.

    CONCLUSION: The present review is focused on recent developments regarding polymeric nanocarriers, such as polymeric micelles, polymeric nanoparticles, dendrimers, liposomes, nanoshells, fullerenes, carbon nanotubes (CNT) and quantum dots, etc. for their recent advancements in breast cancer therapy.

    Matched MeSH terms: Antineoplastic Agents/metabolism
  18. Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, Razavi M, Firoozinia M, Zandi K, et al.
    ScientificWorldJournal, 2014;2014:768323.
    PMID: 24526922 DOI: 10.1155/2014/768323
    Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae.
    Matched MeSH terms: Antineoplastic Agents/metabolism*
  19. Biabanikhankahdani R, Bayat S, Ho KL, Alitheen NBM, Tan WS
    Sci Rep, 2017 Jul 13;7(1):5303.
    PMID: 28706267 DOI: 10.1038/s41598-017-05525-4
    pH-responsive virus-like nanoparticles (VLNPs) hold promising potential as drug delivery systems for cancer therapy. In the present study, hepatitis B virus (HBV) VLNPs harbouring His-tags were used to display doxorubicin (DOX) via nitrilotriacetic acid (NTA) conjugation. The His-tags served as pH-responsive nanojoints which released DOX from VLNPs in a controlled manner. The His-tagged VLNPs conjugated non-covalently with NTA-DOX, and cross-linked with folic acid (FA) were able to specifically target and deliver the DOX into ovarian cancer cells via folate receptor (FR)-mediated endocytosis. The cytotoxicity and cellular uptake results revealed that the His-tagged VLNPs significantly increased the accumulation of DOX in the ovarian cancer cells and enhanced the uptake of DOX, which improved anti-tumour effects. This study demonstrated that NTA-DOX can be easily displayed on His-tagged VLNPs by a simple Add-and-Display step with high coupling efficiency and the drug was only released at low pH in a controlled manner. This approach facilitates specific attachment of any drug molecule on His-tagged VLNPs at the very mild conditions without changing the biological structure and native conformation of the VLNPs.
    Matched MeSH terms: Antineoplastic Agents/metabolism*
  20. Valdiani A, Talei D, Tan SG, Abdul Kadir M, Maziah M, Rafii MY, et al.
    PLoS One, 2014;9(2):e87034.
    PMID: 24586262 DOI: 10.1371/journal.pone.0087034
    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA ) for all the andrographolides.
    Matched MeSH terms: Antineoplastic Agents/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links