Displaying all 3 publications

Abstract:
Sort:
  1. Alhoot MA, Wang SM, Sekaran SD
    PLoS Negl Trop Dis, 2011 Nov;5(11):e1410.
    PMID: 22140591 DOI: 10.1371/journal.pntd.0001410
    Dengue infection ranks as one of the most significant viral diseases of the globe. Currently, there is no specific vaccine or antiviral therapy for prevention or treatment. Monocytes/macrophages are the principal target cells for dengue virus and are responsible for disseminating the virus after its transmission. Dengue virus enters target cells via receptor-mediated endocytosis after the viral envelope protein E attaches to the cell surface receptor. This study aimed to investigate the effect of silencing the CD-14 associated molecule and clathrin-mediated endocytosis using siRNA on dengue virus entry into monocytes.
    Matched MeSH terms: Antigens, CD14/metabolism*
  2. Yong YK, Shankar EM, Westhorpe CL, Maisa A, Spelman T, Kamarulzaman A, et al.
    Medicine (Baltimore), 2016 Aug;95(31):e4477.
    PMID: 27495090 DOI: 10.1097/MD.0000000000004477
    HIV-infected individuals on antiretroviral therapy (ART) are at increased risk of cardiovascular disease (CVD). Given the relationship between innate immune activation and CVD, we investigated the association of single-nucleotide polymorphisms (SNPs) in TLR4 and CD14 and carotid intima-media thickness (cIMT), a surrogate measurement for CVD, in HIV-infected individuals on ART and HIV-uninfected controls as a cross-sectional, case-control study. We quantified the frequency of monocyte subsets (CD14, CD16), markers of monocyte activation (CD38, HLA-DR), and endothelial adhesion (CCR2, CX3CR1, CD11b) by flow cytometry. Plasma levels of lipopolysaccharide, sCD163, sCD14, sCX3CL1, and sCCL2, were measured by ELISA. Genotyping of TLR4 and CD14 SNPs was also performed. The TT genotype for CD14/-260SNP but not the CC/CT genotype was associated with elevated plasma sCD14, and increased frequency of CD11b+CD14+ monocytes in HIV-infected individuals. The TT genotype was associated with lower cIMT in HIV-infected patients (n = 47) but not in HIV-uninfected controls (n = 37). The AG genotype for TLR4/+896 was associated with increased CX3CR1 expression on total monocytes among HIV-infected individuals and increased sCCL2 and fibrinogen levels in HIV-uninfected controls. SNPs in CD14/-260 and TLR4/+896 were significantly associated with different markers of systemic and monocyte activation and cIMT that differed between HIV-infected participants on ART and HIV-uninfected controls. Further investigation on the relationship of these SNPs with a clinical endpoint of CVD is warranted in HIV-infected patients on ART.
    Matched MeSH terms: Antigens, CD14/metabolism
  3. Lee KH, Chow YL, Sharmili V, Abas F, Alitheen NB, Shaari K, et al.
    Int J Mol Sci, 2012;13(3):2985-3008.
    PMID: 22489138 DOI: 10.3390/ijms13032985
    Our preliminary screening has shown that curcumin derivative BDMC33 [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] exerted promising nitric oxide inhibitory activity in activated macrophages. However, the molecular basis and mechanism for its pharmacological action is yet to be elucidated. The aim of this study was to investigate the anti-inflammatory properties of BDMC33 and elucidate its underlying mechanism action in macrophage cells. Our current study demonstrated that BDMC33 inhibits the secretion of major pro-inflammatory mediators in stimulated macrophages, and includes NO, TNF-α and IL-1β through interference in both nuclear factor kappaB (NF-κB) and mitogen activator protein kinase (MAPK) signaling cascade in IFN-γ/LPS-stimulated macrophages. Moreover, BDMC33 also interrupted LPS signaling through inhibiting the surface expression of CD-14 accessory molecules. In addition, the inhibitory action of BDMC33 not only restricted the macrophages cell (RAW264.7), but also inhibited the secretion of NO and TNF-α in IFN-γ/LPS-challenged microglial cells (BV-2). The experimental data suggests the inflammatory action of BDMC33 on activated macrophage-like cellular systems, which could be used as a future therapeutic agent in the management of chronic inflammatory diseases.
    Matched MeSH terms: Antigens, CD14/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links