Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Abdulkarim MF, Abdullah GZ, Chitneni M, Yam MF, Mahdi ES, Salman IM, et al.
    Pak J Pharm Sci, 2012 Apr;25(2):429-33.
    PMID: 22459473
    The surface activity of some non-steroidal anti-inflammatory agents like ibuprofen was investigated extensively. This fact has attracted the researchers to extend this behavior to other agents like piroxicam. Piroxicam molecules are expected to orient at the interface of oil and aqueous phase. The aim of this study was, firstly, to assess the surface and interfacial tension behaviour of newly synthesised palm oil esters and various pH phosphate buffers. Furthermore, the surface and interfacial tension activity of piroxicam was studied. All the measurements of surface and interfacial tension were made using the tensiometer. The study revealed that piroxicam has no effect on surface tension values of all pH phosphate buffers and palm oil esters. Similarly, various concentrations of piroxicam did not affect the interfacial tensions between the oil phase and the buffer phases. Accordingly, the interfacial tension values of all mixtures of oil and phosphate buffers were considerably high which indicates the immiscibility. It could be concluded that piroxicam has no surface activity. Additionally, there is no surface pressure activity of piroxicam at the interface of plam oil esters and phosphate buffers in the presence of Tweens and Spans.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry*
  2. Adira Wan Khalit WN, Tay KS
    Environ Sci Process Impacts, 2016 May 18;18(5):555-61.
    PMID: 27062128 DOI: 10.1039/c6em00017g
    Mefenamic acid (Mfe) is one of the most frequently detected nonsteroidal anti-inflammatory drugs in the environment. This study investigated the kinetics and the transformation by-products of Mfe during aqueous chlorination. The potential ecotoxicity of the transformation by-products was also evaluated. In the kinetic study, the second-order rate constant (kapp) for the reaction between Mfe and free available chlorine (FAC) was determined at 25 ± 0.1 °C. The result indicated that the degradation of Mfe by FAC is highly pH-dependent. When the pH was increased from 6 to 8, it was found that the kapp for the reaction between Mfe and FAC was decreased from 16.44 to 4.4 M(-1) s(-1). Characterization of the transformation by-products formed during the chlorination of Mfe was carried out using liquid chromatography-quadrupole time-of-flight accurate mass spectrometry. Four major transformation by-products were identified. These transformation by-products were mainly formed through hydroxylation, chlorination and oxidation reactions. Ecotoxicity assessment revealed that transformation by-products, particularly monohydroxylated Mfe which is more toxic than Mfe, can be formed during aqueous chlorination.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry*
  3. Goh CF, Lane ME
    Int J Pharm, 2014 Oct 1;473(1-2):607-16.
    PMID: 25091375 DOI: 10.1016/j.ijpharm.2014.07.052
    Diclofenac (DF) was first synthesized in the 1960's and is currently available as ophthalmic, oral, parenteral, rectal and skin preparations. This review focuses on the administration of DF to the skin. As a member of the non-steroidal anti-inflammatory (NSAID) group of drugs the primary indications of DF are for the management of inflammation and pain but it is also used to treat actinic keratosis. The specific aims of this paper are to: (i) provide an overview of the pharmacokinetics and metabolism of DF following oral and topical administration; (ii) examine critically the various formulation approaches which have been investigated to enhance dermal delivery of DF; and (iii) identify new formulation strategies for enhanced DF skin penetration.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry*
  4. Kanakaraju D, Motti CA, Glass BD, Oelgemöller M
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17437-48.
    PMID: 27230148 DOI: 10.1007/s11356-016-6906-8
    Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  5. Thenapakiam S, Kumar DG, Pushpamalar J, Saravanan M
    Carbohydr Polym, 2013 Apr 15;94(1):356-63.
    PMID: 23544549 DOI: 10.1016/j.carbpol.2013.01.004
    The carboxymethyl sago pulp (CMSP) with a degree of substitution of 0.4% was synthesized from sago waste. The CMSP beads with an average diameter of 3.1-4.8 mm were formed by aluminium chloride gelation as well as further cross-linked by irradiation. To evaluate colon targeted release, a model drug, 5-aminosalicylic acid (5-ASA) was encapsulated in CMSP beads. Fourier-transform infrared spectroscopy and X-ray diffraction studies indicated intact and amorphous nature of entrapped drug. A pH dependent drug release was observed, and about 90% of the drug was released only at pH 7.4 over 9 h. Irradiated beads were resisted the drug release in an acidic environment at a higher extent than non-irradiated beads. The drug release from 6% (w/w) of 5-ASA loaded bead followed zero order, whereas, 15 and 22% loaded beads followed first order. The release exponent n value suggests non-fickian transport of 5-ASA from the beads.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  6. Ee GC, Mah SH, Rahmani M, Taufiq-Yap YH, Teh SS, Lim YM
    J Asian Nat Prod Res, 2011 Oct;13(10):956-60.
    PMID: 21972812 DOI: 10.1080/10286020.2011.600248
    The stem bark extracts of Calophyllum inophyllum furnished one new furanoxanthone, inophinnin (1), in addition to inophyllin A (2), macluraxanthone (3), pyranojacareubin (4), 4-hydroxyxanthone, friedelin, stigmasterol, and betulinic acid. The structures of these compounds were determined by spectroscopic analysis of 1D and 2D NMR spectral data ((1)H, (13)C, DEPT, COSY, HMQC, and HMBC) while EI-MS gave the molecular mass. The new xanthone, inophinnin (1), exhibited some anti-inflammatory activity in nitric oxide assay.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  7. Ong AL, Kamaruddin AH, Bhatia S, Aboul-Enein HY
    J Sep Sci, 2008 Jul;31(13):2476-85.
    PMID: 18646277 DOI: 10.1002/jssc.200800086
    An enzymatic membrane reactor (EMR) for enantioseparation of (R,S)-ketoprofen via Candida antarctica lipase B (CALB) as biocatalyst was investigated. A comparative study of free and immobilized CALB was further conducted. The catalytic behaviour of CALB in an EMR was affected by the process parameters of enzyme load, substrate concentration, substrate molar ratio, lipase solution pH, reaction temperature, and substrate flow rate. Immobilization of CALB in the EMR was able to reduce the amount of enzyme required for the enantioseparation of (R,S)-ketoprofen. Immobilized CALB in the EMR assured higher reaction capacity, better thermal stability, and reusability. It was also found to be more cost effective and practical than free CALB in a batch reactor.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  8. Imran S, Taha M, Ismail NH
    Curr Med Chem, 2015;22(38):4412-33.
    PMID: 26438249
    Bisindolylmethane and its derivatives are pharmacologically active and applicable in the field of pharmaceutical chemistry. Bisindolylmethanes have a variety of biological activities such as antihyperglycemic, antiinflammatory, antibacterial, anticancer, and antileishmanial activities, including enzyme inhibition activity. They play a crucial role in many diseases especially anticancer activity. Modifying their structure had proven to be useful in the search of new therapeutic agents. Extensive research carried out on bisindolylmethane and its derivatives shows that they are pharmacologically significant. The present review focuses on the pharmacological profile of bisindolylmethane derivatives. This review includes the current literature with an update of research findings as well as the perspectives that they hold for future research.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry*
  9. Arshad L, Haque MA, Abbas Bukhari SN, Jantan I
    Future Med Chem, 2017 04;9(6):605-626.
    PMID: 28394628 DOI: 10.4155/fmc-2016-0223
    Curcumin, extracted mainly from Curcuma longa rhizomes, has been reported to possess potent anti-inflammatory and anti-oxidant activities. Although safe at higher doses and exhibiting multiple biological activities, curcumin still has the problem of poor bioavailability which has been an attractive area of research over the last few years. A number of efforts have been made by modifying structural features of curcumin. This review highlights the structurally modified and more stable newly synthesized curcumin analogs that have been screened against antioxidant and anti-inflammatory activities. Also the structure-activity relationship to gain insight into future guidelines for scheming new compounds has been discussed, and further these analogs being more stable may serve as promising agents for use in different pathological conditions.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  10. Goh CF, Craig DQ, Hadgraft J, Lane ME
    Eur J Pharm Biopharm, 2017 Feb;111:16-25.
    PMID: 27845181 DOI: 10.1016/j.ejpb.2016.10.025
    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm(-1)) containing the carboxylate (COO(-)) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO(-) asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  11. Karunakaran T, Ee GCL, Ismail IS, Mohd Nor SM, Zamakshshari NH
    Nat Prod Res, 2018 Jun;32(12):1390-1394.
    PMID: 28715912 DOI: 10.1080/14786419.2017.1350666
    Pure β-mangostin (1) was isolated from the stem bark of Garcinia mangostana L. One monoacetate (2) and five O-alkylated β-mangostin derivatives (3-7) were synthesised from β-mangostin. The structures of these compounds were elucidated and determined using spectroscopic techniques such as 1D NMR and MS. The cytotoxicities and anti-inflammatory activities of these five compounds against RAW cell 264.7 were tested. The structural-activity relationship studies indicated that β-mangostin showed a significant activity against the LPS-induced RAW cell 264.7, while the acetyl- as well as the O-alkyl- β-mangostin derivatives did not give good activity. Naturally occurring β-mangostin demonstrated comparatively better anti-inflammatory activity than its synthetic counterparts.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry*
  12. Mussa ZH, Al-Qaim FF, Yuzir A, Latip J
    Environ Sci Pollut Res Int, 2019 Apr;26(10):10044-10056.
    PMID: 30756352 DOI: 10.1007/s11356-019-04301-3
    Poor removal of many pharmaceuticals and personal care products in sewage treatment plants leads to their discharge into the receiving waters, where they may cause negative effects for aquatic environment and organisms. In this study, electrochemical removal process has been used as alternative method for removal of mefenamic acid (MEF). For our knowledge, removal of MEF using electrochemical process has not been reported yet. Effects of initial concentration of mefenamic acid, sodium chloride (NaCl), and applied voltage were evaluated for improvement of the efficiency of electrochemical treatment process and to understand how much electric energy was consumed in this process. Removal percentage (R%) was ranged between 44 and 97%, depending on the operating parameters except for 0.1 g NaCl which was 9.1%. Consumption energy was 0.224 Wh/mg after 50 min at 2 mg/L of mefenamic acid, 0.5 g NaCl, and 5 V. High consumption energy (0.433 Wh/mg) was observed using high applied voltage of 7 V. Investigation and elucidation of the transformation products were provided by Bruker software dataAnalysis using liquid chromatography-time of flight mass spectrometry. Seven chlorinated and two non-chlorinated transformation products were investigated after 20 min of electrochemical treatment. However, all transformation products (TPs) were eliminated after 140 min. For the assessment of the toxicity, it was impacted by the formation of transformation products especially between 20 and 60 min then the inhibition percentage of E. coli bacteria was decreased after 80 min to be the lowest value.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry*
  13. Almurisi SH, Mohammed A, Qassem F, Jehad H, Jassim A, Al-Japairai K, et al.
    Curr Drug Discov Technol, 2024;21(3):46-55.
    PMID: 37807409 DOI: 10.2174/0115701638262447230920061222
    AIM: This study aimed to formulate and characterize aceclofenac buccal film formulations made of different polymers and evaluate the effects of polymer type on buccal film properties.

    MATERIALS AND METHODS: Five polymer types, namely hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (SCMC), polyvinyl alcohol (PVA), Eudragit S100, and Eudragit SR100, were used to prepare aceclofenac buccal film formulation either separately or combined by solvent-casting method. These formulations were evaluated in terms of physical appearance, folding test, film weight and thickness, drug content, percentage of elongation, moisture uptake, water vapor permeability, and in vitro drug release.

    RESULTS: The addition of Eudragit polymer in most of the produced buccal films was unacceptable with low folding endurance. However, the dissolution profile of buccal films made from PVA and Eudragit SR100 provided a controlled drug release profile.

    CONCLUSION: Buccal films can be formulated using different polymers either individually or in combination to obtain the drug release profile required to achieve a desired treatment goal. Furthermore, the property of the buccal films depends on the type and concentration of the polymer used.

    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  14. Al Muqarrabun LM, Ahmat N
    Eur J Med Chem, 2015 Mar 6;92:514-30.
    PMID: 25599949 DOI: 10.1016/j.ejmech.2015.01.026
    The family Sterculiaceae is one of the most important families among flowering plants. Many of its members demonstrate medicinal properties and have been used for the treatment of various ailments and wounds. A wide range of compounds including alkaloids, phenyl propanoids, flavonoids, terpenoids and other types of compounds including hydrocarbons, sugars, quinones, phenolic acids, lactones, lignans, amine and amides have been isolated from several species in this family. Few studies have reported that some extracts and single compounds isolated from this family exhibited several biological activities, such as antimicrobial, anti-inflammatory, antioxidant and cytotoxic activities. The present review is an effort to provide information about the traditional uses, phytochemistry and pharmacology of species from family Sterculiaceae, and to uncover the gaps and potentials requiring further research opportunities regarding the chemistry and pharmacy of this family.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  15. Mah SH, Ee GC, Teh SS, Sukari MA
    Nat Prod Res, 2015;29(1):98-101.
    PMID: 25229947 DOI: 10.1080/14786419.2014.959949
    Extensive chromatographic isolation and purification of the extracts of the stem bark of Calophyllum inophyllum and Calophyllum soulattri have resulted in 11 xanthones. C. inophyllum gave inophinnin (1), inophinone (2), pyranojacareubin (5), rheediaxanthone A (6), macluraxanthone (7) and 4-hydroxyxanthone (8), while C. soulattri afforded soulattrin (3), phylattrin (4), caloxanthone C (9), brasixanthone B (10) and trapezifolixanthone (11). The structures of these compounds were determined on the basis of spectroscopic analyses such as 1D and 2D NMR, GC-MS, IR and UV. Cytotoxicity screening (MTT assay) carried out in vitro on all the xanthones using five human cancer cell lines indicated good activities for some of these xanthones. The structure-activity relationship study revealed that the inhibitory activities exhibited by these xanthone derivatives to be closely related to the existence and nature of the pyrano and the prenyl substituent groups on their skeleton.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry*
  16. Khor PY, Mohd Aluwi MFF, Rullah K, Lam KW
    Eur J Med Chem, 2019 Dec 01;183:111704.
    PMID: 31557608 DOI: 10.1016/j.ejmech.2019.111704
    Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  17. Abbas K, Amin M, Hussain MA, Sher M, Bukhari SNA, Jantan I, et al.
    Int J Biol Macromol, 2017 Oct;103:441-450.
    PMID: 28526350 DOI: 10.1016/j.ijbiomac.2017.05.061
    This deals with fabrication of macromolecular prodrugs (MPDs) of salicylic acid (SA) and aspirin (ASP) based on a hydrophilic cellulose ether, hydroxyethyl cellulose (HEC). Degrees of substitution (DS) of SA and ASP per HEC repeating unit (HEC-RU) were achieved ranging from 0.60 to 2.18 and 0.53 to1.50, respectively. The amphiphilic HEC-SA conjugate 2 assembled into nanowire-like structures, while HEC-ASP conjugate 6 formed nanoparticles (diameter 300-00nm) at a water/DMSO interface. After oral administration in rabbit models, conjugates 2 and 6 showed plasma half-life of 6.96 and 7.01h with maximum plasma concentration (Cmax) of 15.27 and 23.01μg L-1, respectively, and each reached peak plasma concentration (tmax) at 4.0h. Immunomodulatory assays (interleukin 6 and tumor necrosis factor-α values) revealed that anti-inflammatory properties of SA and ASP were unaltered in conjugates. Swelling inhibition of 61 and 71% was observed for conjugates 2 and 6, respectively, in a carrageenan induced paw edema test. Cytotoxic profiling (MTT assay) showed that conjugates were safe for administration in the concentration range of 2-10mM up to 24h. Thermal analyses revealed that Tdm values of SA and ASP conjugates were increased by 99 and 154̊C, respectively, indicating extraordinary thermal stability imparted to drugs after MPD formation.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  18. Chin KY
    Drug Des Devel Ther, 2016;10:3029-3042.
    PMID: 27703331
    Osteoarthritis is a degenerative disease of the joint affecting aging populations worldwide. It has an underlying inflammatory cause, which contributes to the loss of chondrocytes, leading to diminished cartilage layer at the affected joints. Compounds with anti-inflammatory properties are potential treatment agents for osteoarthritis. Curcumin derived from Curcuma species is an anti-inflammatory compound as such. This review aims to summarize the antiosteoarthritic effects of curcumin derived from clinical and preclinical studies. Many clinical trials have been conducted to determine the effectiveness of curcumin in osteoarthritic patients. Extracts of Curcuma species, curcuminoids and enhanced curcumin, were used in these studies. Patients with osteoarthritis showed improvement in pain, physical function, and quality of life after taking curcumin. They also reported reduced concomitant usage of analgesics and side effects during treatment. In vitro studies demonstrated that curcumin could prevent the apoptosis of chondrocytes, suppress the release of proteoglycans and metal metalloproteases and expression of cyclooxygenase, prostaglandin E-2, and inflammatory cytokines in chondrocytes. These were achieved by blocking the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) system in the chondrocytes, by preventing the activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, phosphorylation, and translocation of the p65 subunit of NF-κB complexes into the nucleus. In conclusion, curcumin is a potential candidate for the treatment of osteoarthritis. More well-planned randomized control trials and enhanced curcumin formulation are required to justify the use of curcumin in treating osteoarthritis.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  19. Yousefi S, Bayat S, Rahman MB, Ibrahim Z, Abdulmalek E
    Chem Biodivers, 2017 Apr;14(4).
    PMID: 28036129 DOI: 10.1002/cbdv.201600362
    Inflammatory bowel disease (IBD) is the main risk factor for developing colorectal cancer which is common in patients of all ages. 5-Aminosalicylic acid (5-ASA), structurally related to the salicylates, is highly active in the treatment of IBD with minor side effects. In this study, the synthesis of galactose and fructose esters of 5-ASA was planned to evaluate the role of glycoconjugation on the bioactivity of the parent drug. The antibacterial activity of the new compounds were evaluated against two Gram-negative and two Gram-positive species of bacteria, with a notable effect observed against Staphylococcus aureus and Escherichia coli in comparisons with the 5-ASA. Cytotoxicity testing over HT-29 and 3T3 cell lines indicated that the toxicity of the new products against normal cells was significantly reduced compared with the original drug, whereas their activity against cancerous cells was slightly decreased. The anti-inflammatory activity test in RAW264.7 macrophage cells indicated that the inhibition of nitric oxide by both of the monosaccharide conjugated derivatives was slightly improved in comparison with the non-conjugated drug.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
  20. Safdar MH, Hasan H, Afzal S, Hussain Z
    Mini Rev Med Chem, 2018;18(12):1047-1063.
    PMID: 29173165 DOI: 10.2174/1389557517666171123212039
    The immune system is an intricate and coordinated nexus serving as a natural defense to preclude internal and external pathogenic insults. The deregulation in the natural balance of immunological functions as a consequence of either over expression or under expression of immune cells tends to cause disruption of homeostasis in the body and may lead to development of numerous immune system disorders. Chalcone moieties (1,3-diphenyl-2-propen-1-one) have been well-documented as ideal lead compounds or precursors to design a wide range of pharmacologically active agents to down-regulate various immune disorders. Owing to their unique structural and molecular framework, these α, β-unsaturated carbonyl-based moieties have also gained remarkable recognition due to their other multifarious pharmacological properties including antifungal, anti-inflammatory, anti-malarial, antibacterial, anti-tuberculosis, and anticancer potential. Though a great number of methodologies are currently being employed for their synthesis, this review mainly focuses on the natural and synthetic chalcone derivatives that are exclusively synthesized via Claisen-Schmidt condensation reaction and their immunomodulatory prospects. We have critically reviewed the literature and provided convincing evidence for the promising efficacy of chalcone derivatives to modulate functioning of various innate and adaptive immune players including granulocytes, mast cells, monocytes, macrophages, platelets, dendritic cells, natural killer cells, and T-lymphocytes.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links